{"title":"评估从水溶液中去除亚甲基蓝的 p(HEMA-co-NIPAM)水凝胶:等温线、动力学和热力学研究。","authors":"Hayriye Mine Antep, Münire Nalan Demir, Cevher Gündoğdu Hizliateş, Simge Öztürk, Elif Esen Coşkun","doi":"10.55730/1300-0527.3662","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, a novel adsorbent material, poly (2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (p(HEMA-co-NIPAM) hydrogel, was synthesized for the purpose of removing methylene blue (MB) from aqueous media. The synthesis of hydrogel was carefully conducted, and its properties were thoroughly examined using techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The adsorption experiments conducted revealed a remarkable affinity of p(HEMA-co-NIPAM) hydrogel towards MB. The highest adsorption was observed when 0.05 g of the adsorbent were utilized, with optimal conditions at a pH of 6.0 and a temperature of 15 °C. This underscores the importance of pH control and temperature regulation in optimizing the adsorption treatment. The adsorption behavior of MB on p(HEMA-co-NIPAM) hydrogel was best elucidated by the Langmuir isotherm model, which provided insights into the maximum adsorption capacity. Impressively, this capacity reached 126.6 mg/g, indicative of the adsorbent's robust capability to capture the MB molecules. The isotherm data further highlighted the strong affinity between p(HEMA-co-NIPAM) hydrogel and the MB dye, underscoring the effectiveness of the synthesized hydrogel as an adsorbent material. The successful application of p(HEMA-co-NIPAM) hydrogel for MB adsorption not only emphasizes its potential for wastewater treatment but also hints at its broader significance for environmental remediation. By harnessing the adsorption capabilities of this hydrogel, the removal of MB from industrial and domestic wastewater could be significantly enhanced, leading to cleaner water resources. This study presents p(HEMA-co-NIPAM) hydrogel as a promising adsorbent material with exceptional affinity for MB. This is demonstrated through a comprehensive analysis of its synthesis, characterization, and adsorption performance. The findings hold promise for addressing wastewater contamination issues and promoting sustainable water management practices.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluation of p(HEMA-co-NIPAM) hydrogels for removal of methylene blue from aqueous solution: isotherm, kinetic, and thermodynamic studies.\",\"authors\":\"Hayriye Mine Antep, Münire Nalan Demir, Cevher Gündoğdu Hizliateş, Simge Öztürk, Elif Esen Coşkun\",\"doi\":\"10.55730/1300-0527.3662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, a novel adsorbent material, poly (2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (p(HEMA-co-NIPAM) hydrogel, was synthesized for the purpose of removing methylene blue (MB) from aqueous media. The synthesis of hydrogel was carefully conducted, and its properties were thoroughly examined using techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The adsorption experiments conducted revealed a remarkable affinity of p(HEMA-co-NIPAM) hydrogel towards MB. The highest adsorption was observed when 0.05 g of the adsorbent were utilized, with optimal conditions at a pH of 6.0 and a temperature of 15 °C. This underscores the importance of pH control and temperature regulation in optimizing the adsorption treatment. The adsorption behavior of MB on p(HEMA-co-NIPAM) hydrogel was best elucidated by the Langmuir isotherm model, which provided insights into the maximum adsorption capacity. Impressively, this capacity reached 126.6 mg/g, indicative of the adsorbent's robust capability to capture the MB molecules. The isotherm data further highlighted the strong affinity between p(HEMA-co-NIPAM) hydrogel and the MB dye, underscoring the effectiveness of the synthesized hydrogel as an adsorbent material. The successful application of p(HEMA-co-NIPAM) hydrogel for MB adsorption not only emphasizes its potential for wastewater treatment but also hints at its broader significance for environmental remediation. By harnessing the adsorption capabilities of this hydrogel, the removal of MB from industrial and domestic wastewater could be significantly enhanced, leading to cleaner water resources. This study presents p(HEMA-co-NIPAM) hydrogel as a promising adsorbent material with exceptional affinity for MB. This is demonstrated through a comprehensive analysis of its synthesis, characterization, and adsorption performance. The findings hold promise for addressing wastewater contamination issues and promoting sustainable water management practices.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.55730/1300-0527.3662\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3662","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of p(HEMA-co-NIPAM) hydrogels for removal of methylene blue from aqueous solution: isotherm, kinetic, and thermodynamic studies.
In this study, a novel adsorbent material, poly (2-hydroxyethyl methacrylate-co-N-isopropyl acrylamide) (p(HEMA-co-NIPAM) hydrogel, was synthesized for the purpose of removing methylene blue (MB) from aqueous media. The synthesis of hydrogel was carefully conducted, and its properties were thoroughly examined using techniques such as Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The adsorption experiments conducted revealed a remarkable affinity of p(HEMA-co-NIPAM) hydrogel towards MB. The highest adsorption was observed when 0.05 g of the adsorbent were utilized, with optimal conditions at a pH of 6.0 and a temperature of 15 °C. This underscores the importance of pH control and temperature regulation in optimizing the adsorption treatment. The adsorption behavior of MB on p(HEMA-co-NIPAM) hydrogel was best elucidated by the Langmuir isotherm model, which provided insights into the maximum adsorption capacity. Impressively, this capacity reached 126.6 mg/g, indicative of the adsorbent's robust capability to capture the MB molecules. The isotherm data further highlighted the strong affinity between p(HEMA-co-NIPAM) hydrogel and the MB dye, underscoring the effectiveness of the synthesized hydrogel as an adsorbent material. The successful application of p(HEMA-co-NIPAM) hydrogel for MB adsorption not only emphasizes its potential for wastewater treatment but also hints at its broader significance for environmental remediation. By harnessing the adsorption capabilities of this hydrogel, the removal of MB from industrial and domestic wastewater could be significantly enhanced, leading to cleaner water resources. This study presents p(HEMA-co-NIPAM) hydrogel as a promising adsorbent material with exceptional affinity for MB. This is demonstrated through a comprehensive analysis of its synthesis, characterization, and adsorption performance. The findings hold promise for addressing wastewater contamination issues and promoting sustainable water management practices.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.