Dae Hyung Lee, Yeji Choi, Mi Hee Lee, Jong-Chul Park
{"title":"在大鼠模型中比较非吸收性弹力线和商用线引起的组织反应和提升效果。","authors":"Dae Hyung Lee, Yeji Choi, Mi Hee Lee, Jong-Chul Park","doi":"10.1093/rb/rbae069","DOIUrl":null,"url":null,"abstract":"<p><p>As we age, our skin loses elasticity and wrinkles form. To prevent this, most people try to improve skin wrinkles by performing procedures such as fillers, and absorbable lifting threads. Another way to solve this structural problem is to use an elastic thread. Although elastic sutures made of polymer materials (such as silicone) are widely used, data regarding their properties and potential effectiveness are lacking. This study aimed to investigate the effects of inserting non-absorbable elastic threads, with different manufacturing requirements and methods, on the skin and subcutaneous tissue. In this study, non-absorbable elastic threads ELATENS and Elasticum using different manufacturing methods were compared. Each thread was transplanted into the subcutaneous layer of the back of a rat to induce wrinkles. After inducing wrinkles in the skin of rat, the degree of skin maintenance by each thread and the thickness of the capsule formed around the suture were measured. Through <i>ex-vivo</i> experiments on each thread, the fixation force in the tissue was confirmed. In a comparison of inflammatory response and collagen formation through histological analysis, it was confirmed that there was no significant difference from the equivalent comparative product. In conclusion, the degree of encapsulation between tissues and collagen fiber formation for improving skin wrinkles was superior in elastic threads compared to non-elastic threads. It is believed that this provides certain elasticity to the skin layer and can induce cell influx to improve wrinkles.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae069"},"PeriodicalIF":5.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272176/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of tissue response and lifting effect induced by non-absorbable elastic thread and commercialized threads in rat model.\",\"authors\":\"Dae Hyung Lee, Yeji Choi, Mi Hee Lee, Jong-Chul Park\",\"doi\":\"10.1093/rb/rbae069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As we age, our skin loses elasticity and wrinkles form. To prevent this, most people try to improve skin wrinkles by performing procedures such as fillers, and absorbable lifting threads. Another way to solve this structural problem is to use an elastic thread. Although elastic sutures made of polymer materials (such as silicone) are widely used, data regarding their properties and potential effectiveness are lacking. This study aimed to investigate the effects of inserting non-absorbable elastic threads, with different manufacturing requirements and methods, on the skin and subcutaneous tissue. In this study, non-absorbable elastic threads ELATENS and Elasticum using different manufacturing methods were compared. Each thread was transplanted into the subcutaneous layer of the back of a rat to induce wrinkles. After inducing wrinkles in the skin of rat, the degree of skin maintenance by each thread and the thickness of the capsule formed around the suture were measured. Through <i>ex-vivo</i> experiments on each thread, the fixation force in the tissue was confirmed. In a comparison of inflammatory response and collagen formation through histological analysis, it was confirmed that there was no significant difference from the equivalent comparative product. In conclusion, the degree of encapsulation between tissues and collagen fiber formation for improving skin wrinkles was superior in elastic threads compared to non-elastic threads. It is believed that this provides certain elasticity to the skin layer and can induce cell influx to improve wrinkles.</p>\",\"PeriodicalId\":20929,\"journal\":{\"name\":\"Regenerative Biomaterials\",\"volume\":\"11 \",\"pages\":\"rbae069\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272176/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Regenerative Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/rb/rbae069\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae069","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Comparison of tissue response and lifting effect induced by non-absorbable elastic thread and commercialized threads in rat model.
As we age, our skin loses elasticity and wrinkles form. To prevent this, most people try to improve skin wrinkles by performing procedures such as fillers, and absorbable lifting threads. Another way to solve this structural problem is to use an elastic thread. Although elastic sutures made of polymer materials (such as silicone) are widely used, data regarding their properties and potential effectiveness are lacking. This study aimed to investigate the effects of inserting non-absorbable elastic threads, with different manufacturing requirements and methods, on the skin and subcutaneous tissue. In this study, non-absorbable elastic threads ELATENS and Elasticum using different manufacturing methods were compared. Each thread was transplanted into the subcutaneous layer of the back of a rat to induce wrinkles. After inducing wrinkles in the skin of rat, the degree of skin maintenance by each thread and the thickness of the capsule formed around the suture were measured. Through ex-vivo experiments on each thread, the fixation force in the tissue was confirmed. In a comparison of inflammatory response and collagen formation through histological analysis, it was confirmed that there was no significant difference from the equivalent comparative product. In conclusion, the degree of encapsulation between tissues and collagen fiber formation for improving skin wrinkles was superior in elastic threads compared to non-elastic threads. It is believed that this provides certain elasticity to the skin layer and can induce cell influx to improve wrinkles.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.