Zubair Ahmed, Muhammad Ikram, Ishaq Khan, Kashif Bashir, Abdul Jabbar Shah, Zahid Hussain, Taous Khan
{"title":"基于 LC-ESI-MS/MS 的铁线莲分子网络、抗氧化、抗胶质瘤活性和分子对接研究。","authors":"Zubair Ahmed, Muhammad Ikram, Ishaq Khan, Kashif Bashir, Abdul Jabbar Shah, Zahid Hussain, Taous Khan","doi":"10.1186/s13007-024-01221-3","DOIUrl":null,"url":null,"abstract":"<p><p>Clematis graveolens Lindl., an indigenous climbing plant found in the Himalayan areas, is used by local communities for the treatment of neck tumors. The objective of this work is to examine the comprehensive metabolomic profile, antioxidant capability, in vitro and in silico anti-glioma effects on U-87 human glioma cell lines of the crude extract and fractions from C. graveolens. Liquid chromatography coupled with mass spectroscopy (LC-MS/MS) was used to establish detailed metabolite profiling of C. graveolens. The assessment of cell cytotoxicity was conducted using MTT cell viability assay on U-87 and BHK-21. Through molecular docking studies, the mode of inhibition and binding interaction between identified compounds and target proteins were also determined to evaluate the in vitro results. The use of LC-MS/MS-based global natural products social (GNPS) molecular networking analysis resulted in the identification of 27 compounds. The crude extract, ethyl acetate fraction, and chloroform fraction exhibited significant inhibitory activity against the U-87 cell lines, with IC<sub>50</sub> values of 112.0, 138.1, and 142.7 µg/mL, respectively. The ethyl acetate fraction exhibited significant inhibitory concentration for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity and the metal chelation activity with IC<sub>50</sub> value of 39.50 µg/mL, 32.27 µg/mL, and 53.46 µg/mL, respectively. The crude extract showed maximum total phenolic, and total flavonoid concentration measuring 338.7 µg GAE/mg, and 177.04 µg QE/mg, respectively. The findings of this study indicate that C. graveolens consists of a diverse range of active phytoconstituents that possess antioxidant and anti-glioma properties.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"111"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271027/pdf/","citationCount":"0","resultStr":"{\"title\":\"LC-ESI-MS/MS-based molecular networking, antioxidant, anti-glioma activity and molecular docking studies of Clematis graveolens.\",\"authors\":\"Zubair Ahmed, Muhammad Ikram, Ishaq Khan, Kashif Bashir, Abdul Jabbar Shah, Zahid Hussain, Taous Khan\",\"doi\":\"10.1186/s13007-024-01221-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Clematis graveolens Lindl., an indigenous climbing plant found in the Himalayan areas, is used by local communities for the treatment of neck tumors. The objective of this work is to examine the comprehensive metabolomic profile, antioxidant capability, in vitro and in silico anti-glioma effects on U-87 human glioma cell lines of the crude extract and fractions from C. graveolens. Liquid chromatography coupled with mass spectroscopy (LC-MS/MS) was used to establish detailed metabolite profiling of C. graveolens. The assessment of cell cytotoxicity was conducted using MTT cell viability assay on U-87 and BHK-21. Through molecular docking studies, the mode of inhibition and binding interaction between identified compounds and target proteins were also determined to evaluate the in vitro results. The use of LC-MS/MS-based global natural products social (GNPS) molecular networking analysis resulted in the identification of 27 compounds. The crude extract, ethyl acetate fraction, and chloroform fraction exhibited significant inhibitory activity against the U-87 cell lines, with IC<sub>50</sub> values of 112.0, 138.1, and 142.7 µg/mL, respectively. The ethyl acetate fraction exhibited significant inhibitory concentration for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity and the metal chelation activity with IC<sub>50</sub> value of 39.50 µg/mL, 32.27 µg/mL, and 53.46 µg/mL, respectively. The crude extract showed maximum total phenolic, and total flavonoid concentration measuring 338.7 µg GAE/mg, and 177.04 µg QE/mg, respectively. The findings of this study indicate that C. graveolens consists of a diverse range of active phytoconstituents that possess antioxidant and anti-glioma properties.</p>\",\"PeriodicalId\":20100,\"journal\":{\"name\":\"Plant Methods\",\"volume\":\"20 1\",\"pages\":\"111\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271027/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13007-024-01221-3\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01221-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
LC-ESI-MS/MS-based molecular networking, antioxidant, anti-glioma activity and molecular docking studies of Clematis graveolens.
Clematis graveolens Lindl., an indigenous climbing plant found in the Himalayan areas, is used by local communities for the treatment of neck tumors. The objective of this work is to examine the comprehensive metabolomic profile, antioxidant capability, in vitro and in silico anti-glioma effects on U-87 human glioma cell lines of the crude extract and fractions from C. graveolens. Liquid chromatography coupled with mass spectroscopy (LC-MS/MS) was used to establish detailed metabolite profiling of C. graveolens. The assessment of cell cytotoxicity was conducted using MTT cell viability assay on U-87 and BHK-21. Through molecular docking studies, the mode of inhibition and binding interaction between identified compounds and target proteins were also determined to evaluate the in vitro results. The use of LC-MS/MS-based global natural products social (GNPS) molecular networking analysis resulted in the identification of 27 compounds. The crude extract, ethyl acetate fraction, and chloroform fraction exhibited significant inhibitory activity against the U-87 cell lines, with IC50 values of 112.0, 138.1, and 142.7 µg/mL, respectively. The ethyl acetate fraction exhibited significant inhibitory concentration for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) activity and the metal chelation activity with IC50 value of 39.50 µg/mL, 32.27 µg/mL, and 53.46 µg/mL, respectively. The crude extract showed maximum total phenolic, and total flavonoid concentration measuring 338.7 µg GAE/mg, and 177.04 µg QE/mg, respectively. The findings of this study indicate that C. graveolens consists of a diverse range of active phytoconstituents that possess antioxidant and anti-glioma properties.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.