miR-92a 在内皮细胞自噬中的作用和作用机制。

IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2024-09-01 Epub Date: 2024-07-26 DOI:10.3892/mmr.2024.13296
Weili Cao, Boxin Zhao, Lin Gui, Xueyuan Sun, Zhiyong Zhang, Lijuan Huang
{"title":"miR-92a 在内皮细胞自噬中的作用和作用机制。","authors":"Weili Cao, Boxin Zhao, Lin Gui, Xueyuan Sun, Zhiyong Zhang, Lijuan Huang","doi":"10.3892/mmr.2024.13296","DOIUrl":null,"url":null,"abstract":"<p><p>Although microRNAs (miRNAs/miRs) serve a significant role in the autophagy of vascular endothelial cells (ECs), the effect of miR‑92a on the autophagy of ECs is currently unclear. Therefore, the present study aimed to investigate the impact of miR‑92a on autophagy in ECs and the underlying molecular processes that control this biological activity. Firstly, an autophagy model of EA.hy926 cells was generated via treatment with the autophagy inducer rapamycin (rapa‑EA.hy926 cells). The expression levels of miR‑92a were then detected by reverse transcription‑quantitative PCR, and the effect of miR‑92a expression on the autophagic activity of rapa‑EA.hy926 cells was studied by overexpressing or inhibiting miR‑92a. The level of autophagy was evaluated by western blot analysis, immunofluorescence staining and transmission electron microscopy. Dual‑luciferase reporter assays were used to confirm the interaction between miR‑92a and FOXO3. The results demonstrated that the expression levels of miR‑92a were decreased in the rapa‑EA.hy926 cell autophagy model. Furthermore, overexpression and inhibition of miR‑92a revealed that upregulation of miR‑92a in these cells inhibited autophagy, whereas miR‑92a knockdown promoted it. It was also confirmed that miR‑92a directly bound to the 3'‑untranslated region of the autophagy‑related gene FOXO3 and reduced its expression. In conclusion, the present study suggested that miR‑92a inhibits autophagy activity in EA.hy926 cells by targeting FOXO3.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"30 3","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304162/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role and mechanism of action of miR‑92a in endothelial cell autophagy.\",\"authors\":\"Weili Cao, Boxin Zhao, Lin Gui, Xueyuan Sun, Zhiyong Zhang, Lijuan Huang\",\"doi\":\"10.3892/mmr.2024.13296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although microRNAs (miRNAs/miRs) serve a significant role in the autophagy of vascular endothelial cells (ECs), the effect of miR‑92a on the autophagy of ECs is currently unclear. Therefore, the present study aimed to investigate the impact of miR‑92a on autophagy in ECs and the underlying molecular processes that control this biological activity. Firstly, an autophagy model of EA.hy926 cells was generated via treatment with the autophagy inducer rapamycin (rapa‑EA.hy926 cells). The expression levels of miR‑92a were then detected by reverse transcription‑quantitative PCR, and the effect of miR‑92a expression on the autophagic activity of rapa‑EA.hy926 cells was studied by overexpressing or inhibiting miR‑92a. The level of autophagy was evaluated by western blot analysis, immunofluorescence staining and transmission electron microscopy. Dual‑luciferase reporter assays were used to confirm the interaction between miR‑92a and FOXO3. The results demonstrated that the expression levels of miR‑92a were decreased in the rapa‑EA.hy926 cell autophagy model. Furthermore, overexpression and inhibition of miR‑92a revealed that upregulation of miR‑92a in these cells inhibited autophagy, whereas miR‑92a knockdown promoted it. It was also confirmed that miR‑92a directly bound to the 3'‑untranslated region of the autophagy‑related gene FOXO3 and reduced its expression. In conclusion, the present study suggested that miR‑92a inhibits autophagy activity in EA.hy926 cells by targeting FOXO3.</p>\",\"PeriodicalId\":18818,\"journal\":{\"name\":\"Molecular medicine reports\",\"volume\":\"30 3\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11304162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular medicine reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3892/mmr.2024.13296\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2024.13296","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

尽管微RNA(miRNA/miRs)在血管内皮细胞(ECs)的自噬中发挥着重要作用,但目前还不清楚miR-92a对ECs自噬的影响。因此,本研究旨在探讨 miR-92a 对 ECs 自噬的影响以及控制这一生物活性的潜在分子过程。首先,通过自噬诱导剂雷帕霉素(rapa-EA.hy926 细胞)的处理生成了 EA.hy926 细胞的自噬模型。然后通过反转录定量 PCR 检测 miR-92a 的表达水平,并通过过表达或抑制 miR-92a 研究 miR-92a 表达对 rapa-EA.hy926 细胞自噬活性的影响。自噬水平通过 Western 印迹分析、免疫荧光染色和透射电子显微镜进行了评估。双荧光素酶报告实验证实了 miR-92a 和 FOXO3 之间的相互作用。结果表明,在 rapa-EA.hy926 细胞自噬模型中,miR-92a 的表达水平降低。此外,miR-92a的过表达和抑制显示,这些细胞中miR-92a的上调抑制了自噬,而miR-92a的敲除则促进了自噬。研究还证实,miR-92a 直接与自噬相关基因 FOXO3 的 3'- 非翻译区结合,并降低了其表达。总之,本研究表明,miR-92a 通过靶向 FOXO3 抑制了 EA.hy926 细胞的自噬活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role and mechanism of action of miR‑92a in endothelial cell autophagy.

Although microRNAs (miRNAs/miRs) serve a significant role in the autophagy of vascular endothelial cells (ECs), the effect of miR‑92a on the autophagy of ECs is currently unclear. Therefore, the present study aimed to investigate the impact of miR‑92a on autophagy in ECs and the underlying molecular processes that control this biological activity. Firstly, an autophagy model of EA.hy926 cells was generated via treatment with the autophagy inducer rapamycin (rapa‑EA.hy926 cells). The expression levels of miR‑92a were then detected by reverse transcription‑quantitative PCR, and the effect of miR‑92a expression on the autophagic activity of rapa‑EA.hy926 cells was studied by overexpressing or inhibiting miR‑92a. The level of autophagy was evaluated by western blot analysis, immunofluorescence staining and transmission electron microscopy. Dual‑luciferase reporter assays were used to confirm the interaction between miR‑92a and FOXO3. The results demonstrated that the expression levels of miR‑92a were decreased in the rapa‑EA.hy926 cell autophagy model. Furthermore, overexpression and inhibition of miR‑92a revealed that upregulation of miR‑92a in these cells inhibited autophagy, whereas miR‑92a knockdown promoted it. It was also confirmed that miR‑92a directly bound to the 3'‑untranslated region of the autophagy‑related gene FOXO3 and reduced its expression. In conclusion, the present study suggested that miR‑92a inhibits autophagy activity in EA.hy926 cells by targeting FOXO3.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信