{"title":"通过平面外反阻尼磁子转矩实现垂直磁化的确定性切换。","authors":"Fei Wang, Guoyi Shi, Dongsheng Yang, Hui Ru Tan, Chenhui Zhang, Jiayu Lei, Yuchen Pu, Shuhan Yang, Anjan Soumyanarayanan, Mehrdad Elyasi, Hyunsoo Yang","doi":"10.1038/s41565-024-01741-y","DOIUrl":null,"url":null,"abstract":"Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons’ movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe2/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of −8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe2/WTe2/NiO/CoFeB heterostructures compared to Bi2Te3/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices. Control of magnetization is at the core of many spintronic applications. Out-of-plane anti-damping magnon torque now enables low-power, deterministic switching of perpendicular magnetization at zero magnetic field.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques\",\"authors\":\"Fei Wang, Guoyi Shi, Dongsheng Yang, Hui Ru Tan, Chenhui Zhang, Jiayu Lei, Yuchen Pu, Shuhan Yang, Anjan Soumyanarayanan, Mehrdad Elyasi, Hyunsoo Yang\",\"doi\":\"10.1038/s41565-024-01741-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons’ movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe2/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of −8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe2/WTe2/NiO/CoFeB heterostructures compared to Bi2Te3/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices. Control of magnetization is at the core of many spintronic applications. Out-of-plane anti-damping magnon torque now enables low-power, deterministic switching of perpendicular magnetization at zero magnetic field.\",\"PeriodicalId\":18915,\"journal\":{\"name\":\"Nature nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":38.1000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41565-024-01741-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01741-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Deterministic switching of perpendicular magnetization by out-of-plane anti-damping magnon torques
Spin-wave excitations of magnetic moments (or magnons) can transport spin angular momentum in insulating magnetic materials. This property distinguishes magnonic devices from traditional electronics, where power consumption results from electrons’ movement. Recently, magnon torques have been used to switch perpendicular magnetization in the presence of an external magnetic field. Here we present a material system composed of WTe2/antiferromagnetic insulator NiO/ferromagnet CoFeB heterostructures that allows magnetic field-free switching of the perpendicular magnetization. The magnon currents, with a spin polarization canting of −8.5° relative to the sample plane, traverse the 25-nm-thick polycrystalline NiO layer while preserving their original polarization direction, subsequently exerting an out-of-plane anti-damping magnon torque on the ferromagnetic layer. Using this mechanism, we achieve a 190-fold reduction in power consumption in PtTe2/WTe2/NiO/CoFeB heterostructures compared to Bi2Te3/NiO/CoFeB control samples, which only exhibit in-plane magnon torques. Our field-free demonstration contributes to the realization of all-electric, low-power, perpendicular magnetization switching devices. Control of magnetization is at the core of many spintronic applications. Out-of-plane anti-damping magnon torque now enables low-power, deterministic switching of perpendicular magnetization at zero magnetic field.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.