Gabriela Reis Pereira-Oliveira, Isabella Dib Ferreira Gremião, Maria Lopes Corrêa, Cindy Caroline Dos Santos Honorato, Paula Gonçalves Viana, Anna Barreto Fernandes Figueiredo, Jéssica Sepúlveda Boechat, Érica Guerino Dos Reis, Raquel de Vasconcelos Carvalhaes Oliveira, Aline Campos de Azevedo da Silva, Thiago Santana Novotny, Lusiele Guaraldo, Sandro Antonio Pereira
{"title":"治疗猫孢子丝虫病期间的血浆伊曲康唑浓度。","authors":"Gabriela Reis Pereira-Oliveira, Isabella Dib Ferreira Gremião, Maria Lopes Corrêa, Cindy Caroline Dos Santos Honorato, Paula Gonçalves Viana, Anna Barreto Fernandes Figueiredo, Jéssica Sepúlveda Boechat, Érica Guerino Dos Reis, Raquel de Vasconcelos Carvalhaes Oliveira, Aline Campos de Azevedo da Silva, Thiago Santana Novotny, Lusiele Guaraldo, Sandro Antonio Pereira","doi":"10.1093/mmy/myae076","DOIUrl":null,"url":null,"abstract":"<p><p>Itraconazole (ITZ) is the most used drug to treat feline sporotrichosis; however, little is known about its pharmacokinetics in cats with this mycosis. The aim of this study was to determine plasma ITZ concentrations in cats with sporotrichosis treated with ITZ as monotherapy or in combination with potassium iodide (KI). Cats diagnosed with sporotrichosis received orally ITZ (100 mg/cat/day) or combination therapy with ITZ (100 mg/cat/day) and KI (2.5-5 mg/kg/day) in the case of worsening or stagnation of the clinical condition. At each monthly visit, blood samples were collected at an interval of 4 h for analysis of trough and peak plasma ITZ concentrations by HPLC. Clinical features and laboratory parameters were evaluated during follow-up. Sixteen cats were included in the study. The median plasma ITZ concentration of all cats was 0.75 µg/mL. The median plasma ITZ concentration was 0.5 µg/mL in cats that received ITZ monotherapy (n = 12) and 1.0 µg/mL in those treated with ITZ + KI (n = 4). The clinical cure rate was 56.3% (n = 9) and the median treatment duration was 8 weeks. Nine cats (56.3%) developed adverse clinical reactions, and hyporexia was the most frequent (n = 8; 88.9%). Serum alanine aminotransferase was elevated in four cats (25%). The median plasma ITZ concentration detected in cats was considered to be therapeutic (>0.5 µg/mL) and was reached after 4 weeks of treatment. Plasma ITZ concentrations were higher in cats that received ITZ + KI compared to those treated only with ITZ, suggesting pharmacokinetic synergism between these drugs.</p>","PeriodicalId":18586,"journal":{"name":"Medical mycology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Plasma itraconazole concentrations during treatment of feline sporotrichosis.\",\"authors\":\"Gabriela Reis Pereira-Oliveira, Isabella Dib Ferreira Gremião, Maria Lopes Corrêa, Cindy Caroline Dos Santos Honorato, Paula Gonçalves Viana, Anna Barreto Fernandes Figueiredo, Jéssica Sepúlveda Boechat, Érica Guerino Dos Reis, Raquel de Vasconcelos Carvalhaes Oliveira, Aline Campos de Azevedo da Silva, Thiago Santana Novotny, Lusiele Guaraldo, Sandro Antonio Pereira\",\"doi\":\"10.1093/mmy/myae076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Itraconazole (ITZ) is the most used drug to treat feline sporotrichosis; however, little is known about its pharmacokinetics in cats with this mycosis. The aim of this study was to determine plasma ITZ concentrations in cats with sporotrichosis treated with ITZ as monotherapy or in combination with potassium iodide (KI). Cats diagnosed with sporotrichosis received orally ITZ (100 mg/cat/day) or combination therapy with ITZ (100 mg/cat/day) and KI (2.5-5 mg/kg/day) in the case of worsening or stagnation of the clinical condition. At each monthly visit, blood samples were collected at an interval of 4 h for analysis of trough and peak plasma ITZ concentrations by HPLC. Clinical features and laboratory parameters were evaluated during follow-up. Sixteen cats were included in the study. The median plasma ITZ concentration of all cats was 0.75 µg/mL. The median plasma ITZ concentration was 0.5 µg/mL in cats that received ITZ monotherapy (n = 12) and 1.0 µg/mL in those treated with ITZ + KI (n = 4). The clinical cure rate was 56.3% (n = 9) and the median treatment duration was 8 weeks. Nine cats (56.3%) developed adverse clinical reactions, and hyporexia was the most frequent (n = 8; 88.9%). Serum alanine aminotransferase was elevated in four cats (25%). The median plasma ITZ concentration detected in cats was considered to be therapeutic (>0.5 µg/mL) and was reached after 4 weeks of treatment. Plasma ITZ concentrations were higher in cats that received ITZ + KI compared to those treated only with ITZ, suggesting pharmacokinetic synergism between these drugs.</p>\",\"PeriodicalId\":18586,\"journal\":{\"name\":\"Medical mycology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical mycology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/mmy/myae076\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical mycology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/mmy/myae076","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Plasma itraconazole concentrations during treatment of feline sporotrichosis.
Itraconazole (ITZ) is the most used drug to treat feline sporotrichosis; however, little is known about its pharmacokinetics in cats with this mycosis. The aim of this study was to determine plasma ITZ concentrations in cats with sporotrichosis treated with ITZ as monotherapy or in combination with potassium iodide (KI). Cats diagnosed with sporotrichosis received orally ITZ (100 mg/cat/day) or combination therapy with ITZ (100 mg/cat/day) and KI (2.5-5 mg/kg/day) in the case of worsening or stagnation of the clinical condition. At each monthly visit, blood samples were collected at an interval of 4 h for analysis of trough and peak plasma ITZ concentrations by HPLC. Clinical features and laboratory parameters were evaluated during follow-up. Sixteen cats were included in the study. The median plasma ITZ concentration of all cats was 0.75 µg/mL. The median plasma ITZ concentration was 0.5 µg/mL in cats that received ITZ monotherapy (n = 12) and 1.0 µg/mL in those treated with ITZ + KI (n = 4). The clinical cure rate was 56.3% (n = 9) and the median treatment duration was 8 weeks. Nine cats (56.3%) developed adverse clinical reactions, and hyporexia was the most frequent (n = 8; 88.9%). Serum alanine aminotransferase was elevated in four cats (25%). The median plasma ITZ concentration detected in cats was considered to be therapeutic (>0.5 µg/mL) and was reached after 4 weeks of treatment. Plasma ITZ concentrations were higher in cats that received ITZ + KI compared to those treated only with ITZ, suggesting pharmacokinetic synergism between these drugs.
期刊介绍:
Medical Mycology is a peer-reviewed international journal that focuses on original and innovative basic and applied studies, as well as learned reviews on all aspects of medical, veterinary and environmental mycology as related to disease. The objective is to present the highest quality scientific reports from throughout the world on divergent topics. These topics include the phylogeny of fungal pathogens, epidemiology and public health mycology themes, new approaches in the diagnosis and treatment of mycoses including clinical trials and guidelines, pharmacology and antifungal susceptibilities, changes in taxonomy, description of new or unusual fungi associated with human or animal disease, immunology of fungal infections, vaccinology for prevention of fungal infections, pathogenesis and virulence, and the molecular biology of pathogenic fungi in vitro and in vivo, including genomics, transcriptomics, metabolomics, and proteomics. Case reports are no longer accepted. In addition, studies of natural products showing inhibitory activity against pathogenic fungi are not accepted without chemical characterization and identification of the compounds responsible for the inhibitory activity.