Chhabilal Regmi, Yuwaraj K Kshetri, S Ranil Wickramasinghe
{"title":"用于膜蒸馏的碳基纳米复合膜:进展、问题和未来展望》。","authors":"Chhabilal Regmi, Yuwaraj K Kshetri, S Ranil Wickramasinghe","doi":"10.3390/membranes14070160","DOIUrl":null,"url":null,"abstract":"<p><p>The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 7","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278710/pdf/","citationCount":"0","resultStr":"{\"title\":\"Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects.\",\"authors\":\"Chhabilal Regmi, Yuwaraj K Kshetri, S Ranil Wickramasinghe\",\"doi\":\"10.3390/membranes14070160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"14 7\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11278710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes14070160\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14070160","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects.
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.