跟腱内膜在循环压缩负荷下的行为:卸载和早期再活动的后果。

IF 2.4 3区 医学 Q3 BIOPHYSICS
{"title":"跟腱内膜在循环压缩负荷下的行为:卸载和早期再活动的后果。","authors":"","doi":"10.1016/j.jbiomech.2024.112231","DOIUrl":null,"url":null,"abstract":"<div><p>The Achilles tendon enthesis (ATE) anchors the Achilles tendon into the calcaneus through fibrocartilaginous tissue. The latter is enriched in type II collagen and proteoglycans (PGs), both of which give the enthesis its capacity to withstand compressive stress. Because unloading and reloading induce remodeling of the ATE fibrocartilage (<span><span>Camy et al., 2022</span></span>), chronic changes in the mechanical load could modify the mechanical response under compressive stress. Therefore, we investigated the ATE fatigue behavior in mice, under cyclic compressive loading, after 14 days of hindlimb suspension and 6 days of reloading. In addition, we performed a qualitative histological study of PGs in ATE fibrocartilage. The mechanical behavior of ATE was impaired in unloaded mice. A significant loss of 27 % in Δd (difference between the maximum and minimum displacements) was observed at the end of the test. In addition, the hysteresis area decreased by approximately 27 % and the stiffness increased by over 45 %. The increased stiffness and loss of viscosity were thrice and almost twice those of the control, respectively. In the reloaded entheses, where the loss of Δd was not significant, we found a significant 28 % decrease in the hysteresis area and a 26 % increase in stiffness, both of which were higher regarding the control condition. These load-dependent changes in the mechanical response seem partly related to changes in PGs in the uncalficied part of the ATE. These findings highlight the importance of managing compressive loading on ATE when performing prophylactic and rehabilitation exercises.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021929024003099/pdfft?md5=742137c0720785ddcf0e93e7416c71d5&pid=1-s2.0-S0021929024003099-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Achilles tendon enthesis behavior under cyclic compressive loading: Consequences of unloading and early remobilization\",\"authors\":\"\",\"doi\":\"10.1016/j.jbiomech.2024.112231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Achilles tendon enthesis (ATE) anchors the Achilles tendon into the calcaneus through fibrocartilaginous tissue. The latter is enriched in type II collagen and proteoglycans (PGs), both of which give the enthesis its capacity to withstand compressive stress. Because unloading and reloading induce remodeling of the ATE fibrocartilage (<span><span>Camy et al., 2022</span></span>), chronic changes in the mechanical load could modify the mechanical response under compressive stress. Therefore, we investigated the ATE fatigue behavior in mice, under cyclic compressive loading, after 14 days of hindlimb suspension and 6 days of reloading. In addition, we performed a qualitative histological study of PGs in ATE fibrocartilage. The mechanical behavior of ATE was impaired in unloaded mice. A significant loss of 27 % in Δd (difference between the maximum and minimum displacements) was observed at the end of the test. In addition, the hysteresis area decreased by approximately 27 % and the stiffness increased by over 45 %. The increased stiffness and loss of viscosity were thrice and almost twice those of the control, respectively. In the reloaded entheses, where the loss of Δd was not significant, we found a significant 28 % decrease in the hysteresis area and a 26 % increase in stiffness, both of which were higher regarding the control condition. These load-dependent changes in the mechanical response seem partly related to changes in PGs in the uncalficied part of the ATE. These findings highlight the importance of managing compressive loading on ATE when performing prophylactic and rehabilitation exercises.</p></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0021929024003099/pdfft?md5=742137c0720785ddcf0e93e7416c71d5&pid=1-s2.0-S0021929024003099-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929024003099\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024003099","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

跟腱内膜(ATE)通过纤维软骨组织将跟腱固定在跟骨上。后者富含 II 型胶原蛋白和蛋白多糖(PGs),这两种物质都赋予了内关节承受压应力的能力。由于卸载和重载会引起 ATE 纤维软骨的重塑(Camy 等人,2022 年),因此机械负荷的长期变化可能会改变压应力下的机械响应。因此,我们研究了小鼠后肢悬吊 14 天和重新加载 6 天后在循环压缩负荷下的 ATE 疲劳行为。此外,我们还对 ATE 纤维软骨中的 PGs 进行了定性组织学研究。未加载小鼠的 ATE 机械性能受损。测试结束时,Δd(最大位移与最小位移之差)明显下降了 27%。此外,滞后面积减少了约 27%,硬度增加了超过 45%。刚度增加和粘度损失分别是对照组的三倍和近两倍。在重新加载的粘合剂中,Δd 的损失并不显著,但我们发现滞后面积显著减少了 28%,刚度增加了 26%,这两项指标均高于对照组。机械响应中的这些负荷变化似乎部分与 ATE 无蹄铁部分的 PGs 变化有关。这些发现强调了在进行预防和康复锻炼时管理 ATE 压缩负荷的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Achilles tendon enthesis behavior under cyclic compressive loading: Consequences of unloading and early remobilization

The Achilles tendon enthesis (ATE) anchors the Achilles tendon into the calcaneus through fibrocartilaginous tissue. The latter is enriched in type II collagen and proteoglycans (PGs), both of which give the enthesis its capacity to withstand compressive stress. Because unloading and reloading induce remodeling of the ATE fibrocartilage (Camy et al., 2022), chronic changes in the mechanical load could modify the mechanical response under compressive stress. Therefore, we investigated the ATE fatigue behavior in mice, under cyclic compressive loading, after 14 days of hindlimb suspension and 6 days of reloading. In addition, we performed a qualitative histological study of PGs in ATE fibrocartilage. The mechanical behavior of ATE was impaired in unloaded mice. A significant loss of 27 % in Δd (difference between the maximum and minimum displacements) was observed at the end of the test. In addition, the hysteresis area decreased by approximately 27 % and the stiffness increased by over 45 %. The increased stiffness and loss of viscosity were thrice and almost twice those of the control, respectively. In the reloaded entheses, where the loss of Δd was not significant, we found a significant 28 % decrease in the hysteresis area and a 26 % increase in stiffness, both of which were higher regarding the control condition. These load-dependent changes in the mechanical response seem partly related to changes in PGs in the uncalficied part of the ATE. These findings highlight the importance of managing compressive loading on ATE when performing prophylactic and rehabilitation exercises.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信