{"title":"营养性 microRNA:前体和成熟 microRNA 摄入后对目标基因的转录后调控以及木虱幼虫发育障碍。","authors":"Rutwik Bardapurkar, Gauri Binayak, Sagar Pandit","doi":"10.1111/imb.12949","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trophic microRNA: Post-transcriptional regulation of target genes and larval development impairment in Plutella xylostella upon precursor and mature microRNA ingestion.\",\"authors\":\"Rutwik Bardapurkar, Gauri Binayak, Sagar Pandit\",\"doi\":\"10.1111/imb.12949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12949\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12949","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Trophic microRNA: Post-transcriptional regulation of target genes and larval development impairment in Plutella xylostella upon precursor and mature microRNA ingestion.
MicroRNAs (miRNAs) are post-transcriptional gene regulators. In the miRNA pathway's cytoplasmic part, the miRNA is processed from a hairpin-structured precursor to a double-stranded (ds) mature RNA and ultimately to a single-stranded mature miRNA. In insects, ingesting these two ds forms can regulate the target gene expression; this inspired the trophic miRNA's use as a functional genomics and pest management tool. However, systematic studies enabling comparisons of pre- and mature forms, dosages, administration times and instar-wise effects on target transcripts and phenotypes, which can help develop a miRNA administration method, are unavailable due to the different focuses of the previous investigations. We investigated the impact of trophically delivered Px-let-7 miRNA on the lepidopteran pest Plutella xylostella, to compare the efficacies of its pre- and ds-mature forms. Continuous feeding on the miRNA-supplemented diet suppressed expressions of FTZ-F1 and E74, the target ecdysone pathway genes. Both the pre-let-7 and mature let-7 miRNA forms similarly downregulated the target transcripts in all four larval instars. Pre-let-7 and let-7 ingestions decreased larval mass and instar duration and increased mortality in all instars, exhibiting adverse effects on larval growth and development. miRNA processing Dicer-1 and AGO-1's upregulations upon miRNA ingestion denoted the systemic miRNA spread in larval tissues. The scrambled sequence controls did not affect the target transcripts, suggesting the sequence-specific targeting by the mature miRNA and hairpin cassette's non-involvement in the target downregulation. This work provides a framework for miRNA and target gene function analyses and potentiates the trophic miRNA's utility in pest management.
期刊介绍:
Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins.
This includes research related to:
• insect gene structure
• control of gene expression
• localisation and function/activity of proteins
• interactions of proteins and ligands/substrates
• effect of mutations on gene/protein function
• evolution of insect genes/genomes, especially where principles relevant to insects in general are established
• molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations
• gene mapping using molecular tools
• molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects
Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).