对不同冰层覆盖情况下渠道的水力特性和污染物传输进行数值模拟。

IF 2.2 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Environmental Technology Pub Date : 2025-04-01 Epub Date: 2024-07-25 DOI:10.1080/09593330.2024.2382939
Zhiwei Li, Cheng Liu, Bin Sun, Gang Chen, Feifei Wang, Junhua Li
{"title":"对不同冰层覆盖情况下渠道的水力特性和污染物传输进行数值模拟。","authors":"Zhiwei Li, Cheng Liu, Bin Sun, Gang Chen, Feifei Wang, Junhua Li","doi":"10.1080/09593330.2024.2382939","DOIUrl":null,"url":null,"abstract":"<p><p>In winter, rivers at high latitudes often freeze and an ice cover emerges at the free surface of the river. According to the coverage degree of the ice cover, rivers can be divided into free-flowing, partially frozen, and completely frozen. The presence of ice cover can greatly alter the hydraulic conditions of rivers, complicating the transport of pollutants in river channels. The distribution of pollutants in rivers with different ice coverages was simulated using the Detached Eddy Simulation (DES) model in this paper. The velocity distribution, the pollutant diffusion coefficient distribution, the turbulent kinetic energy distribution, and the vortex distribution with different ice coverages were analyzed. The velocity in the ice cover zone is at a lower rate than in the open flow zone. With the increase of the ice coverage, the turbulent kinetic energy of the ice cover area in partially frozen conditions gradually increases, which makes the water flow turbulence increase. The diffusion coefficient of pollutants in the ice cover area is greater than that in the open flow area, so pollutants disperse more quickly in the ice cover area. The turbulence energy and the diffusion coefficient have similar distribution characteristics beneath the ice cover. The presence of the ice cover promotes the movement of the vortex from the open flow area to the ice cover area, which may be the reason for the larger turbulence energy and the diffusion coefficient. The simulation results can provide a reference for ice disasters and water quality remediation.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1307-1320"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of hydraulic characteristics and pollutant transport in the channels with different ice coverages.\",\"authors\":\"Zhiwei Li, Cheng Liu, Bin Sun, Gang Chen, Feifei Wang, Junhua Li\",\"doi\":\"10.1080/09593330.2024.2382939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In winter, rivers at high latitudes often freeze and an ice cover emerges at the free surface of the river. According to the coverage degree of the ice cover, rivers can be divided into free-flowing, partially frozen, and completely frozen. The presence of ice cover can greatly alter the hydraulic conditions of rivers, complicating the transport of pollutants in river channels. The distribution of pollutants in rivers with different ice coverages was simulated using the Detached Eddy Simulation (DES) model in this paper. The velocity distribution, the pollutant diffusion coefficient distribution, the turbulent kinetic energy distribution, and the vortex distribution with different ice coverages were analyzed. The velocity in the ice cover zone is at a lower rate than in the open flow zone. With the increase of the ice coverage, the turbulent kinetic energy of the ice cover area in partially frozen conditions gradually increases, which makes the water flow turbulence increase. The diffusion coefficient of pollutants in the ice cover area is greater than that in the open flow area, so pollutants disperse more quickly in the ice cover area. The turbulence energy and the diffusion coefficient have similar distribution characteristics beneath the ice cover. The presence of the ice cover promotes the movement of the vortex from the open flow area to the ice cover area, which may be the reason for the larger turbulence energy and the diffusion coefficient. The simulation results can provide a reference for ice disasters and water quality remediation.</p>\",\"PeriodicalId\":12009,\"journal\":{\"name\":\"Environmental Technology\",\"volume\":\" \",\"pages\":\"1307-1320\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Technology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/09593330.2024.2382939\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2382939","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

冬季,高纬度地区的河流经常结冰,河流自由表面出现冰盖。根据冰盖的覆盖程度,河流可分为自由流动型、部分冻结型和完全冻结型。冰盖的存在会极大地改变河流的水力条件,使污染物在河道中的传输变得复杂。本文利用离散涡模拟(DES)模型模拟了不同冰层覆盖情况下污染物在河流中的分布。分析了不同冰盖下的流速分布、污染物扩散系数分布、湍流动能分布和涡流分布。冰覆盖区的流速低于开放流区。随着冰覆盖率的增加,部分冻结条件下冰覆盖区的湍流动能逐渐增加,从而使水流湍流增加。污染物在冰盖区的扩散系数大于明流区,因此污染物在冰盖区的扩散速度更快。湍流能量和扩散系数在冰盖下具有相似的分布特征。冰盖的存在促进了漩涡从明流区向冰盖区的移动,这可能是湍流能和扩散系数较大的原因。模拟结果可为冰灾和水质修复提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical simulation of hydraulic characteristics and pollutant transport in the channels with different ice coverages.

In winter, rivers at high latitudes often freeze and an ice cover emerges at the free surface of the river. According to the coverage degree of the ice cover, rivers can be divided into free-flowing, partially frozen, and completely frozen. The presence of ice cover can greatly alter the hydraulic conditions of rivers, complicating the transport of pollutants in river channels. The distribution of pollutants in rivers with different ice coverages was simulated using the Detached Eddy Simulation (DES) model in this paper. The velocity distribution, the pollutant diffusion coefficient distribution, the turbulent kinetic energy distribution, and the vortex distribution with different ice coverages were analyzed. The velocity in the ice cover zone is at a lower rate than in the open flow zone. With the increase of the ice coverage, the turbulent kinetic energy of the ice cover area in partially frozen conditions gradually increases, which makes the water flow turbulence increase. The diffusion coefficient of pollutants in the ice cover area is greater than that in the open flow area, so pollutants disperse more quickly in the ice cover area. The turbulence energy and the diffusion coefficient have similar distribution characteristics beneath the ice cover. The presence of the ice cover promotes the movement of the vortex from the open flow area to the ice cover area, which may be the reason for the larger turbulence energy and the diffusion coefficient. The simulation results can provide a reference for ice disasters and water quality remediation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Technology
Environmental Technology 环境科学-环境科学
CiteScore
6.50
自引率
3.60%
发文量
0
审稿时长
4 months
期刊介绍: Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies. Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months. Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信