Miyuru De Silva, Prabhavie M. Opallage, Robert C. Dunn
{"title":"小型毛细管电泳装置中诱导电渗流的研究:控制和逆转策略","authors":"Miyuru De Silva, Prabhavie M. Opallage, Robert C. Dunn","doi":"10.1002/elps.202400107","DOIUrl":null,"url":null,"abstract":"<p>Electroosmotic flow (EOF) is the bulk flow of solution in a capillary or microchannel induced by an applied electric potential. For capillary and microchip electrophoresis, the EOF enables analysis of both cations and anions in one separation and can be varied to modify separation speed and resolution. The EOF arises from an electrical double layer at the capillary wall and is normally controlled through the pH and ionic strength of the background buffer or with the use of additives. Understanding and controlling the electrical double layer is therefore critical for maintaining acceptable repeatability during method development. Surprisingly, in fused silica capillaries at low pH, studies observe an EOF even though the capillary surface should be neutralized. Previous work has suggested the presence of an “induced electroosmotic flow” from radial electric fields generated across the capillary wall due to the separation voltage and grounded components external to the capillary. Using thin-wall (15 µm) fused silica separation capillaries to facilitate the study of radial fields, we show that the EOF mobility depends on both the separation voltage and the location of external grounds. This is consistent with the induced EOF model, in which radial electric fields embed positive charges at the capillary walls to create an electrical double layer. The magnitude of the effect is characterized and shown to have long-range influences that are difficult to completely null by moving grounded components away from the separation capillary. Instead, active EOF control using externally applied potentials or a passive approach using a negative separation voltage are discussed as two possible methods for controlling the induced EOF. Both methods can reverse the EOF and improve the resolution and peak efficiency in amino acid separations.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":"45 19-20","pages":"1764-1774"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of induced electroosmotic flow in small-scale capillary electrophoresis devices: Strategies for control and reversal\",\"authors\":\"Miyuru De Silva, Prabhavie M. Opallage, Robert C. Dunn\",\"doi\":\"10.1002/elps.202400107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electroosmotic flow (EOF) is the bulk flow of solution in a capillary or microchannel induced by an applied electric potential. For capillary and microchip electrophoresis, the EOF enables analysis of both cations and anions in one separation and can be varied to modify separation speed and resolution. The EOF arises from an electrical double layer at the capillary wall and is normally controlled through the pH and ionic strength of the background buffer or with the use of additives. Understanding and controlling the electrical double layer is therefore critical for maintaining acceptable repeatability during method development. Surprisingly, in fused silica capillaries at low pH, studies observe an EOF even though the capillary surface should be neutralized. Previous work has suggested the presence of an “induced electroosmotic flow” from radial electric fields generated across the capillary wall due to the separation voltage and grounded components external to the capillary. Using thin-wall (15 µm) fused silica separation capillaries to facilitate the study of radial fields, we show that the EOF mobility depends on both the separation voltage and the location of external grounds. This is consistent with the induced EOF model, in which radial electric fields embed positive charges at the capillary walls to create an electrical double layer. The magnitude of the effect is characterized and shown to have long-range influences that are difficult to completely null by moving grounded components away from the separation capillary. Instead, active EOF control using externally applied potentials or a passive approach using a negative separation voltage are discussed as two possible methods for controlling the induced EOF. Both methods can reverse the EOF and improve the resolution and peak efficiency in amino acid separations.</p>\",\"PeriodicalId\":11596,\"journal\":{\"name\":\"ELECTROPHORESIS\",\"volume\":\"45 19-20\",\"pages\":\"1764-1774\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ELECTROPHORESIS\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400107\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elps.202400107","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigation of induced electroosmotic flow in small-scale capillary electrophoresis devices: Strategies for control and reversal
Electroosmotic flow (EOF) is the bulk flow of solution in a capillary or microchannel induced by an applied electric potential. For capillary and microchip electrophoresis, the EOF enables analysis of both cations and anions in one separation and can be varied to modify separation speed and resolution. The EOF arises from an electrical double layer at the capillary wall and is normally controlled through the pH and ionic strength of the background buffer or with the use of additives. Understanding and controlling the electrical double layer is therefore critical for maintaining acceptable repeatability during method development. Surprisingly, in fused silica capillaries at low pH, studies observe an EOF even though the capillary surface should be neutralized. Previous work has suggested the presence of an “induced electroosmotic flow” from radial electric fields generated across the capillary wall due to the separation voltage and grounded components external to the capillary. Using thin-wall (15 µm) fused silica separation capillaries to facilitate the study of radial fields, we show that the EOF mobility depends on both the separation voltage and the location of external grounds. This is consistent with the induced EOF model, in which radial electric fields embed positive charges at the capillary walls to create an electrical double layer. The magnitude of the effect is characterized and shown to have long-range influences that are difficult to completely null by moving grounded components away from the separation capillary. Instead, active EOF control using externally applied potentials or a passive approach using a negative separation voltage are discussed as two possible methods for controlling the induced EOF. Both methods can reverse the EOF and improve the resolution and peak efficiency in amino acid separations.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.