Andrea Bonisoli-Alquati, Allyson K Jackson, Collin A Eagles-Smith, Sydney Moyo, Anna A Pérez-Umphrey, Michael J Polito, Allison M Snider, S Tyler Williams, Stefan Woltmann, Philip C Stouffer, Sabrina S Taylor
{"title":"密西西比河河口海滨麻雀和沼泽稻鼠体内的汞浓度存在差异。","authors":"Andrea Bonisoli-Alquati, Allyson K Jackson, Collin A Eagles-Smith, Sydney Moyo, Anna A Pérez-Umphrey, Michael J Polito, Allison M Snider, S Tyler Williams, Stefan Woltmann, Philip C Stouffer, Sabrina S Taylor","doi":"10.1007/s10646-024-02789-1","DOIUrl":null,"url":null,"abstract":"<p><p>Mercury (Hg) concentrations and their associated toxicological effects in terrestrial ecosystems of the Gulf of Mexico are largely unknown. Compounding this uncertainty, a large input of organic matter from the 2010 Deepwater Horizon oil spill may have altered Hg cycling and bioaccumulation dynamics. To test this idea, we quantified blood concentrations of total mercury (THg) in Seaside Sparrows (Ammospiza maritima) and Marsh Rice Rats (Oryzomys palustris) in marshes west and east of the Mississippi River in 2015 and 2016. We also tested for a difference in THg concentrations between oiled and non-oiled sites. To address the potential confounding effect of diet variation on Hg transfer, we used stable nitrogen (δ<sup>15</sup>N) and carbon (δ<sup>13</sup>C) isotope values as proxies of trophic position and the source of primary production, respectively. Our results revealed that five to six years after the spill, THg concentrations were not higher in sites oiled by the spill compared to non-oiled sites. In both species, THg was higher at sites east of the Mississippi River compared to control and oiled sites, located west. In Seaside Sparrows but not in Marsh Rice Rats, THg increased with δ<sup>15</sup>N values, suggesting Hg trophic biomagnification. Overall, even in sites with the most elevated THg, concentrations were generally low. In Seaside Sparrows, THg concentrations were also lower than previously reported in this and other closely related passerines, with only 7% of tested birds exceeding the lowest observed effect concentration associated with toxic effects across bird species (0.2 µg/g ww). The factors associated with geographic heterogeneity in Hg exposure remain uncertain. Clarification could inform risk assessment and future restoration and management actions in a region facing vast anthropogenic changes.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"959-971"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399195/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mercury concentrations in Seaside Sparrows and Marsh Rice Rats differ across the Mississippi River Estuary.\",\"authors\":\"Andrea Bonisoli-Alquati, Allyson K Jackson, Collin A Eagles-Smith, Sydney Moyo, Anna A Pérez-Umphrey, Michael J Polito, Allison M Snider, S Tyler Williams, Stefan Woltmann, Philip C Stouffer, Sabrina S Taylor\",\"doi\":\"10.1007/s10646-024-02789-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mercury (Hg) concentrations and their associated toxicological effects in terrestrial ecosystems of the Gulf of Mexico are largely unknown. Compounding this uncertainty, a large input of organic matter from the 2010 Deepwater Horizon oil spill may have altered Hg cycling and bioaccumulation dynamics. To test this idea, we quantified blood concentrations of total mercury (THg) in Seaside Sparrows (Ammospiza maritima) and Marsh Rice Rats (Oryzomys palustris) in marshes west and east of the Mississippi River in 2015 and 2016. We also tested for a difference in THg concentrations between oiled and non-oiled sites. To address the potential confounding effect of diet variation on Hg transfer, we used stable nitrogen (δ<sup>15</sup>N) and carbon (δ<sup>13</sup>C) isotope values as proxies of trophic position and the source of primary production, respectively. Our results revealed that five to six years after the spill, THg concentrations were not higher in sites oiled by the spill compared to non-oiled sites. In both species, THg was higher at sites east of the Mississippi River compared to control and oiled sites, located west. In Seaside Sparrows but not in Marsh Rice Rats, THg increased with δ<sup>15</sup>N values, suggesting Hg trophic biomagnification. Overall, even in sites with the most elevated THg, concentrations were generally low. In Seaside Sparrows, THg concentrations were also lower than previously reported in this and other closely related passerines, with only 7% of tested birds exceeding the lowest observed effect concentration associated with toxic effects across bird species (0.2 µg/g ww). The factors associated with geographic heterogeneity in Hg exposure remain uncertain. Clarification could inform risk assessment and future restoration and management actions in a region facing vast anthropogenic changes.</p>\",\"PeriodicalId\":11497,\"journal\":{\"name\":\"Ecotoxicology\",\"volume\":\" \",\"pages\":\"959-971\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11399195/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s10646-024-02789-1\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02789-1","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Mercury concentrations in Seaside Sparrows and Marsh Rice Rats differ across the Mississippi River Estuary.
Mercury (Hg) concentrations and their associated toxicological effects in terrestrial ecosystems of the Gulf of Mexico are largely unknown. Compounding this uncertainty, a large input of organic matter from the 2010 Deepwater Horizon oil spill may have altered Hg cycling and bioaccumulation dynamics. To test this idea, we quantified blood concentrations of total mercury (THg) in Seaside Sparrows (Ammospiza maritima) and Marsh Rice Rats (Oryzomys palustris) in marshes west and east of the Mississippi River in 2015 and 2016. We also tested for a difference in THg concentrations between oiled and non-oiled sites. To address the potential confounding effect of diet variation on Hg transfer, we used stable nitrogen (δ15N) and carbon (δ13C) isotope values as proxies of trophic position and the source of primary production, respectively. Our results revealed that five to six years after the spill, THg concentrations were not higher in sites oiled by the spill compared to non-oiled sites. In both species, THg was higher at sites east of the Mississippi River compared to control and oiled sites, located west. In Seaside Sparrows but not in Marsh Rice Rats, THg increased with δ15N values, suggesting Hg trophic biomagnification. Overall, even in sites with the most elevated THg, concentrations were generally low. In Seaside Sparrows, THg concentrations were also lower than previously reported in this and other closely related passerines, with only 7% of tested birds exceeding the lowest observed effect concentration associated with toxic effects across bird species (0.2 µg/g ww). The factors associated with geographic heterogeneity in Hg exposure remain uncertain. Clarification could inform risk assessment and future restoration and management actions in a region facing vast anthropogenic changes.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.