{"title":"作为治疗腹主动脉瘤药物靶点的 Proprotein convertase subtilisin/kexin type 9。","authors":"Jonathan Golledge, Hong S Lu, Sonia Shah","doi":"10.1097/MOL.0000000000000945","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose of review: </strong>There are no current drug therapies to limit abdominal aortic aneurysm (AAA) growth. This review summarizes evidence suggesting that inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) may be a drug target to limit AAA growth.</p><p><strong>Recent findings: </strong>Mendelian randomization studies suggest that raised LDL and non-HDL-cholesterol are causal in AAA formation. PCSK9 was reported to be upregulated in human AAA samples compared to aortic samples from organ donors. PCSK9 gain of function viral vectors promoted aortic expansion in C57BL/6 mice infused with angiotensin II. The effect of altering PCSK9 expression in the aortic perfusion elastase model was reported to be inconsistent. Mutations in the gene encoding PCSK9, which increase serum cholesterol, were associated with increased risk of human AAA. Patients with AAA also have a high risk of cardiovascular death, myocardial infarction and stroke. Recent research suggests that PCSK9 inhibition would substantially reduce the risk of these events.</p><p><strong>Summary: </strong>Past research suggests that drugs that inhibit PCSK9 have potential as a novel therapy for AAA to both limit aneurysm growth and reduce risk of cardiovascular events. A large multinational randomized controlled trial is needed to test if PCSK9 inhibition limits AAA growth and cardiovascular events.</p>","PeriodicalId":11109,"journal":{"name":"Current opinion in lipidology","volume":" ","pages":"241-247"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387138/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proprotein convertase subtilisin/kexin type 9 as a drug target for abdominal aortic aneurysm.\",\"authors\":\"Jonathan Golledge, Hong S Lu, Sonia Shah\",\"doi\":\"10.1097/MOL.0000000000000945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose of review: </strong>There are no current drug therapies to limit abdominal aortic aneurysm (AAA) growth. This review summarizes evidence suggesting that inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) may be a drug target to limit AAA growth.</p><p><strong>Recent findings: </strong>Mendelian randomization studies suggest that raised LDL and non-HDL-cholesterol are causal in AAA formation. PCSK9 was reported to be upregulated in human AAA samples compared to aortic samples from organ donors. PCSK9 gain of function viral vectors promoted aortic expansion in C57BL/6 mice infused with angiotensin II. The effect of altering PCSK9 expression in the aortic perfusion elastase model was reported to be inconsistent. Mutations in the gene encoding PCSK9, which increase serum cholesterol, were associated with increased risk of human AAA. Patients with AAA also have a high risk of cardiovascular death, myocardial infarction and stroke. Recent research suggests that PCSK9 inhibition would substantially reduce the risk of these events.</p><p><strong>Summary: </strong>Past research suggests that drugs that inhibit PCSK9 have potential as a novel therapy for AAA to both limit aneurysm growth and reduce risk of cardiovascular events. A large multinational randomized controlled trial is needed to test if PCSK9 inhibition limits AAA growth and cardiovascular events.</p>\",\"PeriodicalId\":11109,\"journal\":{\"name\":\"Current opinion in lipidology\",\"volume\":\" \",\"pages\":\"241-247\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387138/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in lipidology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MOL.0000000000000945\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in lipidology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MOL.0000000000000945","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Proprotein convertase subtilisin/kexin type 9 as a drug target for abdominal aortic aneurysm.
Purpose of review: There are no current drug therapies to limit abdominal aortic aneurysm (AAA) growth. This review summarizes evidence suggesting that inhibiting proprotein convertase subtilisin/kexin type 9 (PCSK9) may be a drug target to limit AAA growth.
Recent findings: Mendelian randomization studies suggest that raised LDL and non-HDL-cholesterol are causal in AAA formation. PCSK9 was reported to be upregulated in human AAA samples compared to aortic samples from organ donors. PCSK9 gain of function viral vectors promoted aortic expansion in C57BL/6 mice infused with angiotensin II. The effect of altering PCSK9 expression in the aortic perfusion elastase model was reported to be inconsistent. Mutations in the gene encoding PCSK9, which increase serum cholesterol, were associated with increased risk of human AAA. Patients with AAA also have a high risk of cardiovascular death, myocardial infarction and stroke. Recent research suggests that PCSK9 inhibition would substantially reduce the risk of these events.
Summary: Past research suggests that drugs that inhibit PCSK9 have potential as a novel therapy for AAA to both limit aneurysm growth and reduce risk of cardiovascular events. A large multinational randomized controlled trial is needed to test if PCSK9 inhibition limits AAA growth and cardiovascular events.
期刊介绍:
With its easy-to-digest reviews on important advances in world literature, Current Opinion in Lipidology offers expert evaluation on a wide range of topics from six key disciplines including nutrition and metabolism, genetics and molecular biology, and hyperlipidaemia and cardiovascular disease. Published bimonthly, each issue covers in detail the most pertinent advances in these fields from the previous year. This is supplemented by a section of Bimonthly Updates, which deliver an insight into new developments at the cutting edge of the disciplines covered in the journal.