Yi Sul Cho, Do Hyoung Kim, Jin Young Bae, Jo Young Son, Jong-Heon Kim, Ruqayya Afridi, Kyoungho Suk, Dong Kuk Ahn, Yong Chul Bae
{"title":"神经性疼痛大鼠模型中延髓背角星形胶质细胞的结构重组","authors":"Yi Sul Cho, Do Hyoung Kim, Jin Young Bae, Jo Young Son, Jong-Heon Kim, Ruqayya Afridi, Kyoungho Suk, Dong Kuk Ahn, Yong Chul Bae","doi":"10.1007/s00429-024-02835-y","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.</p>","PeriodicalId":9145,"journal":{"name":"Brain Structure & Function","volume":" ","pages":"1757-1768"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural reorganization of medullary dorsal horn astrocytes in a rat model of neuropathic pain.\",\"authors\":\"Yi Sul Cho, Do Hyoung Kim, Jin Young Bae, Jo Young Son, Jong-Heon Kim, Ruqayya Afridi, Kyoungho Suk, Dong Kuk Ahn, Yong Chul Bae\",\"doi\":\"10.1007/s00429-024-02835-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.</p>\",\"PeriodicalId\":9145,\"journal\":{\"name\":\"Brain Structure & Function\",\"volume\":\" \",\"pages\":\"1757-1768\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Structure & Function\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00429-024-02835-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Structure & Function","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00429-024-02835-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
多项研究表明,延髓背角(MDH)中的星形胶质细胞在病理性疼痛的发展过程中扮演着重要角色。然而,人们对神经病理性状态下 MDH 中作为星形胶质细胞主要功能部分的外周星形胶质细胞过程(PAP)的结构重组知之甚少。为此,我们在眶下神经慢性缩窄性损伤(CCI-ION)后的神经病理性疼痛大鼠模型中,使用电子显微镜免疫组化法检测了 PAP 的标记物 ezrin,并进行了定量分析,从而研究了 MDH 表层中 PAP 及其邻近突触前轴突末端和突触后树突之间的结构关系。我们发现,与对照组相比,患有 CCI-ION 的大鼠(1) ezrin 阳性(+)PAP 的数量、面积百分比、表面密度和体积分数,以及突触分数都有所下降、(2) 给予 mGluR5 拮抗剂 2-甲基-6-(苯乙炔基)吡啶(MPEP)可消除这些效应。这些研究结果表明,神经损伤后,感觉传入中枢突触周围的 PAP 会发生结构重组,表明这可能是由 mGluR5 介导的,并且可能是神经病理性疼痛中增强星形胶质细胞与神经元相互作用的结构基础。
Structural reorganization of medullary dorsal horn astrocytes in a rat model of neuropathic pain.
Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.
期刊介绍:
Brain Structure & Function publishes research that provides insight into brain structure−function relationships. Studies published here integrate data spanning from molecular, cellular, developmental, and systems architecture to the neuroanatomy of behavior and cognitive functions. Manuscripts with focus on the spinal cord or the peripheral nervous system are not accepted for publication. Manuscripts with focus on diseases, animal models of diseases, or disease-related mechanisms are only considered for publication, if the findings provide novel insight into the organization and mechanisms of normal brain structure and function.