Mingzhe Shen, Yandong Huang, Zhitao Cai, Vladimir V Cherny, Thomas E DeCoursey, Jana Shen
{"title":"人类电压门控质子通道 Hv1 的内部 pH 感测残基是组氨酸 168。","authors":"Mingzhe Shen, Yandong Huang, Zhitao Cai, Vladimir V Cherny, Thomas E DeCoursey, Jana Shen","doi":"10.1016/j.bpj.2024.07.027","DOIUrl":null,"url":null,"abstract":"<p><p>The molecular mechanisms governing the human voltage-gated proton channel hH<sub>v</sub>1 remain elusive. Here, we used membrane-enabled hybrid-solvent continuous constant pH molecular dynamics (CpHMD) simulations with pH replica exchange to further evaluate the structural models of hH<sub>v</sub>1 in the closed (hyperpolarized) and open (depolarized) states recently obtained with MD simulations and explore potential pH-sensing residues. The CpHMD titration at a set of symmetric pH conditions revealed three residues that can gain or lose protons upon channel depolarization. Among them, residue H168 at the intracellular end of the S3 helix switches from the deprotonated to the protonated state and its protonation is correlated with the increased tilting of the S3 helix during the transition from the closed to the open state. Thus, the simulation data suggest H168 as an interior pH sensor, in support of a recent finding based on electrophysiological experiments of H<sub>v</sub>1 mutants. We propose that protonation of H168 acts as a key that unlocks the closed channel configuration by increasing the flexibility of the S2-S3 linker, which increases the tilt angle of S3 and enhances the mobility of the S4 helix, thus promoting channel opening. Our work represents an important step toward deciphering the pH-dependent gating mechanism of hH<sub>v</sub>1.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":"4211-4220"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interior pH-sensing residue of human voltage-gated proton channel H<sub>v</sub>1 is histidine 168.\",\"authors\":\"Mingzhe Shen, Yandong Huang, Zhitao Cai, Vladimir V Cherny, Thomas E DeCoursey, Jana Shen\",\"doi\":\"10.1016/j.bpj.2024.07.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The molecular mechanisms governing the human voltage-gated proton channel hH<sub>v</sub>1 remain elusive. Here, we used membrane-enabled hybrid-solvent continuous constant pH molecular dynamics (CpHMD) simulations with pH replica exchange to further evaluate the structural models of hH<sub>v</sub>1 in the closed (hyperpolarized) and open (depolarized) states recently obtained with MD simulations and explore potential pH-sensing residues. The CpHMD titration at a set of symmetric pH conditions revealed three residues that can gain or lose protons upon channel depolarization. Among them, residue H168 at the intracellular end of the S3 helix switches from the deprotonated to the protonated state and its protonation is correlated with the increased tilting of the S3 helix during the transition from the closed to the open state. Thus, the simulation data suggest H168 as an interior pH sensor, in support of a recent finding based on electrophysiological experiments of H<sub>v</sub>1 mutants. We propose that protonation of H168 acts as a key that unlocks the closed channel configuration by increasing the flexibility of the S2-S3 linker, which increases the tilt angle of S3 and enhances the mobility of the S4 helix, thus promoting channel opening. Our work represents an important step toward deciphering the pH-dependent gating mechanism of hH<sub>v</sub>1.</p>\",\"PeriodicalId\":8922,\"journal\":{\"name\":\"Biophysical journal\",\"volume\":\" \",\"pages\":\"4211-4220\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpj.2024.07.027\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2024.07.027","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Interior pH-sensing residue of human voltage-gated proton channel Hv1 is histidine 168.
The molecular mechanisms governing the human voltage-gated proton channel hHv1 remain elusive. Here, we used membrane-enabled hybrid-solvent continuous constant pH molecular dynamics (CpHMD) simulations with pH replica exchange to further evaluate the structural models of hHv1 in the closed (hyperpolarized) and open (depolarized) states recently obtained with MD simulations and explore potential pH-sensing residues. The CpHMD titration at a set of symmetric pH conditions revealed three residues that can gain or lose protons upon channel depolarization. Among them, residue H168 at the intracellular end of the S3 helix switches from the deprotonated to the protonated state and its protonation is correlated with the increased tilting of the S3 helix during the transition from the closed to the open state. Thus, the simulation data suggest H168 as an interior pH sensor, in support of a recent finding based on electrophysiological experiments of Hv1 mutants. We propose that protonation of H168 acts as a key that unlocks the closed channel configuration by increasing the flexibility of the S2-S3 linker, which increases the tilt angle of S3 and enhances the mobility of the S4 helix, thus promoting channel opening. Our work represents an important step toward deciphering the pH-dependent gating mechanism of hHv1.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.