瑞香素 I 和瑞香素 II 通过调节小鼠星形胶质细胞和小胶质细胞对 CUMS 诱导的神经炎症具有抗抑郁样作用。

IF 1.6 4区 心理学 Q3 BEHAVIORAL SCIENCES
Iardja S L Sales, Alana G de Souza, Adriano J M Chaves Filho, Tiago L Sampaio, Daniel M A da Silva, José T Valentim, Raquell de C Chaves, Michelle V R Soares, Dilailson C Costa Júnior, José M Barbosa Filho, Danielle S Macêdo, Francisca Cléa Florenço de Sousa
{"title":"瑞香素 I 和瑞香素 II 通过调节小鼠星形胶质细胞和小胶质细胞对 CUMS 诱导的神经炎症具有抗抑郁样作用。","authors":"Iardja S L Sales, Alana G de Souza, Adriano J M Chaves Filho, Tiago L Sampaio, Daniel M A da Silva, José T Valentim, Raquell de C Chaves, Michelle V R Soares, Dilailson C Costa Júnior, José M Barbosa Filho, Danielle S Macêdo, Francisca Cléa Florenço de Sousa","doi":"10.1097/FBP.0000000000000788","DOIUrl":null,"url":null,"abstract":"<p><p>Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15th to the 22nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1β) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1β levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Antidepressant-like effect of riparin I and riparin II against CUMS-induced neuroinflammation via astrocytes and microglia modulation in mice.\",\"authors\":\"Iardja S L Sales, Alana G de Souza, Adriano J M Chaves Filho, Tiago L Sampaio, Daniel M A da Silva, José T Valentim, Raquell de C Chaves, Michelle V R Soares, Dilailson C Costa Júnior, José M Barbosa Filho, Danielle S Macêdo, Francisca Cléa Florenço de Sousa\",\"doi\":\"10.1097/FBP.0000000000000788\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15th to the 22nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1β) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1β levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.</p>\",\"PeriodicalId\":8832,\"journal\":{\"name\":\"Behavioural Pharmacology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Pharmacology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1097/FBP.0000000000000788\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000788","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

抑郁症是一种常见的情绪障碍,许多患者对传统药物疗法没有反应,或出现各种不良反应。这项研究提出,瑞香素 I(RIP I)和瑞香素 II(RIP II)通过调节星形胶质细胞和小胶质细胞发挥神经保护作用,从而逆转抑郁样行为。为了验证我们的假设并阐明 RIP I 和 RIP II 对神经炎症的影响途径,我们使用了慢性不可预知轻度应激(CUMS)抑郁小鼠模型。雄性瑞士小鼠暴露于应激源 28 天。从第 15 天到第 22 天,动物通过灌胃接受 RIP I 或 RIP II(50 毫克/千克)或氟西汀(FLU,10 毫克/千克)或载体。第29天,进行行为测试。在海马中测量了小胶质细胞(离子化钙结合适配分子-1 - Iba-1)和星形胶质细胞(胶质纤维酸性蛋白 - GFAP)标记物的表达以及细胞因子肿瘤坏死因子α(TNF-α)和白细胞介素1β(IL-1β)的水平。CUMS诱导了抑郁样行为和认知障碍、高TNF-α和IL-1β水平、GFAP减少和Iba-1表达增加。RIP I和RIP II可逆转这些改变。这些结果有助于理解RIP I和RIP II抗抑郁作用的机制,这可能与神经炎症抑制有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antidepressant-like effect of riparin I and riparin II against CUMS-induced neuroinflammation via astrocytes and microglia modulation in mice.

Depression is a common mood disorder and many patients do not respond to conventional pharmacotherapy or experience a variety of adverse effects. This work proposed that riparin I (RIP I) and riparin II (RIP II) present neuroprotective effects through modulation of astrocytes and microglia, resulting in the reversal of depressive-like behaviors. To verify our hypothesis and clarify the pathways underlying the effect of RIP I and RIP II on neuroinflammation, we used the chronic unpredictable mild stress (CUMS) depression model in mice. Male Swiss mice were exposed to stressors for 28 days. From 15th to the 22nd day, the animals received RIP I or RIP II (50 mg/kg) or fluoxetine (FLU, 10 mg/kg) or vehicle, by gavage. On the 29th day, behavioral tests were performed. Expressions of microglia (ionized calcium-binding adaptor molecule-1 - Iba-1) and astrocyte (glial fibrillary acidic protein - GFAP) markers and levels of cytokines tumor necrosis factor alfa (TNF-α) and interleukin 1 beta (IL-1β) were measured in the hippocampus. CUMS induced depressive-like behaviors and cognitive impairment, high TNF-α and IL-1β levels, decreased GFAP, and increased Iba-1 expressions. RIP I and RIP II reversed these alterations. These results contribute to the understanding the mechanisms underlying the antidepressant effect of RIP I and RIP II, which may be related to neuroinflammatory suppression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioural Pharmacology
Behavioural Pharmacology 医学-行为科学
CiteScore
3.40
自引率
0.00%
发文量
84
审稿时长
6-12 weeks
期刊介绍: Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信