{"title":"飞行时间 PET/CT 可抑制由于胃肠道错位造成的基于 CT 的衰减校正和散射重合校正误差。","authors":"Yuya Watanabe, Shota Hosokawa, Yasuyuki Takahashi","doi":"10.22038/AOJNMB.2024.74406.1520","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to examine the influence of changes in CT values on PET images, specifically focusing on errors in CT-based attenuation correction and scatter coincidence correction (CTAC/SC) caused by gastrointestinal gas. Furthermore, it aimed to demonstrate the effectiveness of time-of-flight (TOF) PET in reducing CTAC/SC errors.</p><p><strong>Methods: </strong>PET images were reconstructed using multiple CT images with varying CT values. The study then compared the fluctuations in pixel values of the PET images corresponding to the different CT values utilized for CTAC/SC between non-TOF and TOF acquisitions.</p><p><strong>Results: </strong>PET pixel values fluctuated with changes in CT values. In the phantom study, TOF showed a significantly smaller change in PET pixel value of 1.00±0.27 kBq/mL compared to 3.72±1.33 kBq/mL in the non-TOF at sites with a CT change of +1000 HU. In the patient study, a linear regression analysis was performed to determine the effect of changes in CT values due to gastrointestinal gas migration on standard uptake value (SUV).The results showed that the TOF group had a lower ratio of change in SUV to change in CT values compared to the non-TOF group. These findings revealed that PET pixel values exhibited fluctuations in response to changes in CT values, and TOF-PET effectively mitigated CTAC/SC errors arising from gastrointestinal gas.</p><p><strong>Conclusions: </strong>TOF-PET has the potential to reduce the occurrence of suspicious accumulation.</p>","PeriodicalId":8503,"journal":{"name":"Asia Oceania Journal of Nuclear Medicine and Biology","volume":"12 2","pages":"131-141"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263777/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time-of-flight PET/CT suppresses CT based attenuation correction and scatter coincidence correction errors due to misalignment of the gastrointestinal tract.\",\"authors\":\"Yuya Watanabe, Shota Hosokawa, Yasuyuki Takahashi\",\"doi\":\"10.22038/AOJNMB.2024.74406.1520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to examine the influence of changes in CT values on PET images, specifically focusing on errors in CT-based attenuation correction and scatter coincidence correction (CTAC/SC) caused by gastrointestinal gas. Furthermore, it aimed to demonstrate the effectiveness of time-of-flight (TOF) PET in reducing CTAC/SC errors.</p><p><strong>Methods: </strong>PET images were reconstructed using multiple CT images with varying CT values. The study then compared the fluctuations in pixel values of the PET images corresponding to the different CT values utilized for CTAC/SC between non-TOF and TOF acquisitions.</p><p><strong>Results: </strong>PET pixel values fluctuated with changes in CT values. In the phantom study, TOF showed a significantly smaller change in PET pixel value of 1.00±0.27 kBq/mL compared to 3.72±1.33 kBq/mL in the non-TOF at sites with a CT change of +1000 HU. In the patient study, a linear regression analysis was performed to determine the effect of changes in CT values due to gastrointestinal gas migration on standard uptake value (SUV).The results showed that the TOF group had a lower ratio of change in SUV to change in CT values compared to the non-TOF group. These findings revealed that PET pixel values exhibited fluctuations in response to changes in CT values, and TOF-PET effectively mitigated CTAC/SC errors arising from gastrointestinal gas.</p><p><strong>Conclusions: </strong>TOF-PET has the potential to reduce the occurrence of suspicious accumulation.</p>\",\"PeriodicalId\":8503,\"journal\":{\"name\":\"Asia Oceania Journal of Nuclear Medicine and Biology\",\"volume\":\"12 2\",\"pages\":\"131-141\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263777/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia Oceania Journal of Nuclear Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22038/AOJNMB.2024.74406.1520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Oceania Journal of Nuclear Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22038/AOJNMB.2024.74406.1520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
摘要
研究目的本研究旨在检查 CT 值变化对 PET 图像的影响,特别关注胃肠道气体导致的基于 CT 的衰减校正和散射巧合校正(CTAC/SC)误差。此外,该研究还旨在证明飞行时间 PET 在减少 CTAC/SC 误差方面的有效性:方法:使用不同 CT 值的多个 CT 图像重建 PET 图像。然后,研究比较了非 TOF 和 TOF 采集的 PET 图像像素值的波动情况,这些像素值与 CTAC/SC 所使用的不同 CT 值相对应:PET 像素值随着 CT 值的变化而波动。在模型研究中,在 CT 变化为 +1000 HU 的部位,TOF 显示 PET 像素值的变化明显较小,为 1.00±0.27 kBq/mL,而非 TOF 则为 3.72±1.33 kBq/mL。结果显示,与非TOF组相比,TOF组的SUV变化与CT值变化的比率较低。这些研究结果表明,PET像素值会随着CT值的变化而波动,TOF-PET能有效减轻胃肠道气体引起的CTAC/SC误差:TOF-PET有可能减少可疑积聚的发生。
Time-of-flight PET/CT suppresses CT based attenuation correction and scatter coincidence correction errors due to misalignment of the gastrointestinal tract.
Objectives: This study aimed to examine the influence of changes in CT values on PET images, specifically focusing on errors in CT-based attenuation correction and scatter coincidence correction (CTAC/SC) caused by gastrointestinal gas. Furthermore, it aimed to demonstrate the effectiveness of time-of-flight (TOF) PET in reducing CTAC/SC errors.
Methods: PET images were reconstructed using multiple CT images with varying CT values. The study then compared the fluctuations in pixel values of the PET images corresponding to the different CT values utilized for CTAC/SC between non-TOF and TOF acquisitions.
Results: PET pixel values fluctuated with changes in CT values. In the phantom study, TOF showed a significantly smaller change in PET pixel value of 1.00±0.27 kBq/mL compared to 3.72±1.33 kBq/mL in the non-TOF at sites with a CT change of +1000 HU. In the patient study, a linear regression analysis was performed to determine the effect of changes in CT values due to gastrointestinal gas migration on standard uptake value (SUV).The results showed that the TOF group had a lower ratio of change in SUV to change in CT values compared to the non-TOF group. These findings revealed that PET pixel values exhibited fluctuations in response to changes in CT values, and TOF-PET effectively mitigated CTAC/SC errors arising from gastrointestinal gas.
Conclusions: TOF-PET has the potential to reduce the occurrence of suspicious accumulation.