MiR-155-5p 可差异化调控 IL-13Rα1 和 IL-13Rα2 的表达和信号传导,导致严重哮喘患者肺上皮细胞表型异常。

IF 5.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Martin Klein, Pierre-Alexandre Gagnon, Mabrouka Salem, Mahmoud Rouabhia, Jamila Chakir
{"title":"MiR-155-5p 可差异化调控 IL-13Rα1 和 IL-13Rα2 的表达和信号传导,导致严重哮喘患者肺上皮细胞表型异常。","authors":"Martin Klein, Pierre-Alexandre Gagnon, Mabrouka Salem, Mahmoud Rouabhia, Jamila Chakir","doi":"10.1165/rcmb.2024-0089OC","DOIUrl":null,"url":null,"abstract":"<p><p>MiR-155-5p is known to increase in innate and adaptive immune cells in response to IL-13 and is associated with asthma severity. However, little is known about its role in airway structural cells. BECs isolated from healthy donors and severe asthma patients were stimulated with IL-13. MiR-155-5p expression and release were measured by RT-PCR in BECs and in their derived exosomes. Modulation of miR-155-5p in BECs was performed using transfection of miR-155-5p inhibitor and mimic. IL-13Rα1, IL-13Rα2, MUC5AC, IL-8 and Eotaxin-1 expression were measured by RT-PCR and western blot. BECs repair process was assessed by wound healing assay. IL-13Rα1 and IL-13Rα2 expression and downstream pathways were evaluated by western blot. Dual Luciferase assay was used to determine miR-155-5p target genes associated to IL-13 receptors signaling. BECs from severe asthma showed an increased expression and exosomal release of miR-155-5p at baseline that was amplified by IL-13 stimulation. BECs from asthmatics expressed more IL-13Rα1 and less IL-13Rα2 than healthy donors and IL-13Rα1 but not IL-13Rα2 induced miR-155-5p expression under IL-13 stimulation. MiR-155-5p overexpression favored <i>MUC5AC</i>, <i>IL-8</i> and <i>Eotaxin-1</i> through IL-13Rα1/SOCS1/STAT6 pathway to the detriment of a delayed repair process with a downregulated IL-13Rα2/MAPK14/c-Jun/c-Fos signaling. Dual Luciferase assay confirmed that miR-155-5p modulates both IL-13 receptors pathways by directly targeting SOCS1, c-Fos and MAPK14. MiR-155-5p is overexpressed in severe asthma BECs and regulates IL-13Rα1 and IL-13Rα2 expression and signaling, favoring expression of mucin and eosinophils related genes to detriment of airway repair. These results show that miR-155-5p may contribute to airway epithelial cell dysfunction in severe asthma.</p>","PeriodicalId":7655,"journal":{"name":"American Journal of Respiratory Cell and Molecular Biology","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiR-155-5p Differentially Regulates IL-13Rα1 and IL-13Rα2 Expression and Signalling, Driving Abnormal Lung Epithelial Cell Phenotype in Severe Asthma.\",\"authors\":\"Martin Klein, Pierre-Alexandre Gagnon, Mabrouka Salem, Mahmoud Rouabhia, Jamila Chakir\",\"doi\":\"10.1165/rcmb.2024-0089OC\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MiR-155-5p is known to increase in innate and adaptive immune cells in response to IL-13 and is associated with asthma severity. However, little is known about its role in airway structural cells. BECs isolated from healthy donors and severe asthma patients were stimulated with IL-13. MiR-155-5p expression and release were measured by RT-PCR in BECs and in their derived exosomes. Modulation of miR-155-5p in BECs was performed using transfection of miR-155-5p inhibitor and mimic. IL-13Rα1, IL-13Rα2, MUC5AC, IL-8 and Eotaxin-1 expression were measured by RT-PCR and western blot. BECs repair process was assessed by wound healing assay. IL-13Rα1 and IL-13Rα2 expression and downstream pathways were evaluated by western blot. Dual Luciferase assay was used to determine miR-155-5p target genes associated to IL-13 receptors signaling. BECs from severe asthma showed an increased expression and exosomal release of miR-155-5p at baseline that was amplified by IL-13 stimulation. BECs from asthmatics expressed more IL-13Rα1 and less IL-13Rα2 than healthy donors and IL-13Rα1 but not IL-13Rα2 induced miR-155-5p expression under IL-13 stimulation. MiR-155-5p overexpression favored <i>MUC5AC</i>, <i>IL-8</i> and <i>Eotaxin-1</i> through IL-13Rα1/SOCS1/STAT6 pathway to the detriment of a delayed repair process with a downregulated IL-13Rα2/MAPK14/c-Jun/c-Fos signaling. Dual Luciferase assay confirmed that miR-155-5p modulates both IL-13 receptors pathways by directly targeting SOCS1, c-Fos and MAPK14. MiR-155-5p is overexpressed in severe asthma BECs and regulates IL-13Rα1 and IL-13Rα2 expression and signaling, favoring expression of mucin and eosinophils related genes to detriment of airway repair. These results show that miR-155-5p may contribute to airway epithelial cell dysfunction in severe asthma.</p>\",\"PeriodicalId\":7655,\"journal\":{\"name\":\"American Journal of Respiratory Cell and Molecular Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Respiratory Cell and Molecular Biology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1165/rcmb.2024-0089OC\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Respiratory Cell and Molecular Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1165/rcmb.2024-0089OC","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,MiR-155-5p 在先天性和适应性免疫细胞中对 IL-13 的反应会增加,并与哮喘的严重程度有关。然而,人们对其在气道结构细胞中的作用知之甚少。用 IL-13 刺激从健康供体和严重哮喘患者体内分离出的 BECs。通过 RT-PCR 测定了 BECs 及其衍生外泌体中 MiR-155-5p 的表达和释放。利用转染 miR-155-5p 抑制剂和模拟物对 BECs 中的 miR-155-5p 进行调节。RT-PCR和Western blot检测了IL-13Rα1、IL-13Rα2、MUC5AC、IL-8和Eotaxin-1的表达。伤口愈合试验评估了 BECs 的修复过程。IL-13Rα1 和 IL-13Rα2 的表达及下游通路通过 Western 印迹进行评估。双荧光素酶测定法用于确定与IL-13受体信号转导相关的miR-155-5p靶基因。重症哮喘患者的 BECs 在基线期显示出 miR-155-5p 的表达和外泌体释放增加,并在 IL-13 刺激下放大。与健康供体相比,哮喘患者的 BECs 表达了更多的 IL-13Rα1,而较少的 IL-13Rα2;在 IL-13 刺激下,IL-13Rα1 而不是 IL-13Rα2 会诱导 miR-155-5p 的表达。通过 IL-13Rα1/SOCS1/STAT6 通路,MiR-155-5p 的过量表达有利于 MUC5AC、IL-8 和 Eotaxin-1,而 IL-13Rα2/MAPK14/c-Jun/c-Fos 信号下调则不利于延迟修复过程。双荧光素酶测定证实,miR-155-5p 通过直接靶向 SOCS1、c-Fos 和 MAPK14 来调节 IL-13 受体的两条通路。MiR-155-5p 在重症哮喘 BECs 中过表达,并调控 IL-13Rα1 和 IL-13Rα2 的表达和信号传导,有利于粘蛋白和嗜酸性粒细胞相关基因的表达,不利于气道修复。这些结果表明,miR-155-5p 可能会导致严重哮喘患者的气道上皮细胞功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MiR-155-5p Differentially Regulates IL-13Rα1 and IL-13Rα2 Expression and Signalling, Driving Abnormal Lung Epithelial Cell Phenotype in Severe Asthma.

MiR-155-5p is known to increase in innate and adaptive immune cells in response to IL-13 and is associated with asthma severity. However, little is known about its role in airway structural cells. BECs isolated from healthy donors and severe asthma patients were stimulated with IL-13. MiR-155-5p expression and release were measured by RT-PCR in BECs and in their derived exosomes. Modulation of miR-155-5p in BECs was performed using transfection of miR-155-5p inhibitor and mimic. IL-13Rα1, IL-13Rα2, MUC5AC, IL-8 and Eotaxin-1 expression were measured by RT-PCR and western blot. BECs repair process was assessed by wound healing assay. IL-13Rα1 and IL-13Rα2 expression and downstream pathways were evaluated by western blot. Dual Luciferase assay was used to determine miR-155-5p target genes associated to IL-13 receptors signaling. BECs from severe asthma showed an increased expression and exosomal release of miR-155-5p at baseline that was amplified by IL-13 stimulation. BECs from asthmatics expressed more IL-13Rα1 and less IL-13Rα2 than healthy donors and IL-13Rα1 but not IL-13Rα2 induced miR-155-5p expression under IL-13 stimulation. MiR-155-5p overexpression favored MUC5AC, IL-8 and Eotaxin-1 through IL-13Rα1/SOCS1/STAT6 pathway to the detriment of a delayed repair process with a downregulated IL-13Rα2/MAPK14/c-Jun/c-Fos signaling. Dual Luciferase assay confirmed that miR-155-5p modulates both IL-13 receptors pathways by directly targeting SOCS1, c-Fos and MAPK14. MiR-155-5p is overexpressed in severe asthma BECs and regulates IL-13Rα1 and IL-13Rα2 expression and signaling, favoring expression of mucin and eosinophils related genes to detriment of airway repair. These results show that miR-155-5p may contribute to airway epithelial cell dysfunction in severe asthma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.20
自引率
3.10%
发文量
370
审稿时长
3-8 weeks
期刊介绍: The American Journal of Respiratory Cell and Molecular Biology publishes papers that report significant and original observations in the area of pulmonary biology. The focus of the Journal includes, but is not limited to, cellular, biochemical, molecular, developmental, genetic, and immunologic studies of lung cells and molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信