{"title":"用于测定人血清和胶囊样品中舒尼替尼的磁性分子印迹纳米纤维的表征和优化。","authors":"","doi":"10.1016/j.talanta.2024.126588","DOIUrl":null,"url":null,"abstract":"<div><p>This article reports a spectrofluorometric method for the determination of sunitinib (STB) drug based on molecularly imprinted nanofibers fabricated by the electrospinning method and modified by magnetic nanoparticles as sorbent. The characterization of magnetic molecularly imprinted nanofibers (MMINs) was carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), which confirmed the successful synthesis of MMINs with well-distributed magnetite nanoparticles. Drug adsorption and desorption were optimized and important parameters such as sample pH, nanofiber mass, adsorption and desorption time, eluent solvent and sample volume were analyzed. The results demonstrated that the MMINs act as a selective sorbent for STB and can be readily collected through an external magnetic field. Methanol was used as the best eluent solvent for STB desorption from MNIN. A linear correlation was observed between the STB concentrations and fluorescence intensities in the range of 0.01–15.0 mg L<sup>−1</sup>. The detection limit for this method was 0.002 mg L<sup>−1</sup>. The relative standard deviation (RSD) of 2.6 % for 1.0 mg L<sup>−1</sup> and 1.1 % for 10 mg L<sup>−1</sup> of STB (n = 3) were obtained, which indicates that the developed method is precise in determining STB. Human serum and capsule analysis show the applicability of the proposed sensor for real samples.</p></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and optimization of magnetic molecularly imprinted nanofibers for determination of sunitinib in human serum and capsule samples\",\"authors\":\"\",\"doi\":\"10.1016/j.talanta.2024.126588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article reports a spectrofluorometric method for the determination of sunitinib (STB) drug based on molecularly imprinted nanofibers fabricated by the electrospinning method and modified by magnetic nanoparticles as sorbent. The characterization of magnetic molecularly imprinted nanofibers (MMINs) was carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), which confirmed the successful synthesis of MMINs with well-distributed magnetite nanoparticles. Drug adsorption and desorption were optimized and important parameters such as sample pH, nanofiber mass, adsorption and desorption time, eluent solvent and sample volume were analyzed. The results demonstrated that the MMINs act as a selective sorbent for STB and can be readily collected through an external magnetic field. Methanol was used as the best eluent solvent for STB desorption from MNIN. A linear correlation was observed between the STB concentrations and fluorescence intensities in the range of 0.01–15.0 mg L<sup>−1</sup>. The detection limit for this method was 0.002 mg L<sup>−1</sup>. The relative standard deviation (RSD) of 2.6 % for 1.0 mg L<sup>−1</sup> and 1.1 % for 10 mg L<sup>−1</sup> of STB (n = 3) were obtained, which indicates that the developed method is precise in determining STB. Human serum and capsule analysis show the applicability of the proposed sensor for real samples.</p></div>\",\"PeriodicalId\":435,\"journal\":{\"name\":\"Talanta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Talanta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0039914024009676\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914024009676","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Characterization and optimization of magnetic molecularly imprinted nanofibers for determination of sunitinib in human serum and capsule samples
This article reports a spectrofluorometric method for the determination of sunitinib (STB) drug based on molecularly imprinted nanofibers fabricated by the electrospinning method and modified by magnetic nanoparticles as sorbent. The characterization of magnetic molecularly imprinted nanofibers (MMINs) was carried out using X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), which confirmed the successful synthesis of MMINs with well-distributed magnetite nanoparticles. Drug adsorption and desorption were optimized and important parameters such as sample pH, nanofiber mass, adsorption and desorption time, eluent solvent and sample volume were analyzed. The results demonstrated that the MMINs act as a selective sorbent for STB and can be readily collected through an external magnetic field. Methanol was used as the best eluent solvent for STB desorption from MNIN. A linear correlation was observed between the STB concentrations and fluorescence intensities in the range of 0.01–15.0 mg L−1. The detection limit for this method was 0.002 mg L−1. The relative standard deviation (RSD) of 2.6 % for 1.0 mg L−1 and 1.1 % for 10 mg L−1 of STB (n = 3) were obtained, which indicates that the developed method is precise in determining STB. Human serum and capsule analysis show the applicability of the proposed sensor for real samples.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.