基于多壁碳纳米管的多层多孔 Co-Fe 双金属电催化剂,用于可充电锌-空气电池。

IF 3.5 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Lijuan Ma, Han Wang, Jing Zang, Xinna Wang, Hao Li, Yanwei Li, Yanhui Li
{"title":"基于多壁碳纳米管的多层多孔 Co-Fe 双金属电催化剂,用于可充电锌-空气电池。","authors":"Lijuan Ma,&nbsp;Han Wang,&nbsp;Jing Zang,&nbsp;Xinna Wang,&nbsp;Hao Li,&nbsp;Yanwei Li,&nbsp;Yanhui Li","doi":"10.1002/asia.202400366","DOIUrl":null,"url":null,"abstract":"<p>The design of efficient, stable, low-cost non-precious metal-based electrocatalysts with enhanced oxygen reduction reaction (ORR) activity has garnered significant attention in the scientific community. This study introduces a novel electrocatalyst, Fe/Co-N-MWCNT, synthesized through the in-situ growth of ZIF-8 and Fe/Co-Phen on multi-walled carbon nanotubes (MWCNTs), followed by pyrolysis at varying temperatures to optimize its properties. The inclusion of Fe and Co during the pyrolysis process facilitated the creation of metal active sites and Fe−Co, enhancing electron transfer and ORR activity. Compared to Pt/C (E<sub>1/2</sub>=0.854 V, J<sub>L</sub>=4.90 mA cm<sup>−2</sup>), Fe/Co-N-MWCNT exhibited a similar half-wave potential (E<sub>1/2</sub>=0.812 V) and an improved limiting current density (J<sub>L</sub>=5.37 mA cm<sup>−2</sup>). Moreover, Fe/Co-N-MWCNT displayed remarkable stability, showing only a 7 mV negative shift in E<sub>1/2</sub> after 2000 cycles. Ampere response testing indicated a current decay of only 7.8 % for Fe/Co-N-MWCNT after 10000 s, while Pt/C experienced a decay of about 18.4 %. The exceptional catalytic stability of Fe/Co-N-MWCNT positions it as a promising candidate for rechargeable zinc-air batteries, attributed to its high pyridinic nitrogen content, unique structure, and abundant metal active sites.</p>","PeriodicalId":145,"journal":{"name":"Chemistry - An Asian Journal","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilayer Porous Fe/Co-N-MWCNT Electrocatalyst For Rechargeable Zinc-Air Batteries\",\"authors\":\"Lijuan Ma,&nbsp;Han Wang,&nbsp;Jing Zang,&nbsp;Xinna Wang,&nbsp;Hao Li,&nbsp;Yanwei Li,&nbsp;Yanhui Li\",\"doi\":\"10.1002/asia.202400366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The design of efficient, stable, low-cost non-precious metal-based electrocatalysts with enhanced oxygen reduction reaction (ORR) activity has garnered significant attention in the scientific community. This study introduces a novel electrocatalyst, Fe/Co-N-MWCNT, synthesized through the in-situ growth of ZIF-8 and Fe/Co-Phen on multi-walled carbon nanotubes (MWCNTs), followed by pyrolysis at varying temperatures to optimize its properties. The inclusion of Fe and Co during the pyrolysis process facilitated the creation of metal active sites and Fe−Co, enhancing electron transfer and ORR activity. Compared to Pt/C (E<sub>1/2</sub>=0.854 V, J<sub>L</sub>=4.90 mA cm<sup>−2</sup>), Fe/Co-N-MWCNT exhibited a similar half-wave potential (E<sub>1/2</sub>=0.812 V) and an improved limiting current density (J<sub>L</sub>=5.37 mA cm<sup>−2</sup>). Moreover, Fe/Co-N-MWCNT displayed remarkable stability, showing only a 7 mV negative shift in E<sub>1/2</sub> after 2000 cycles. Ampere response testing indicated a current decay of only 7.8 % for Fe/Co-N-MWCNT after 10000 s, while Pt/C experienced a decay of about 18.4 %. The exceptional catalytic stability of Fe/Co-N-MWCNT positions it as a promising candidate for rechargeable zinc-air batteries, attributed to its high pyridinic nitrogen content, unique structure, and abundant metal active sites.</p>\",\"PeriodicalId\":145,\"journal\":{\"name\":\"Chemistry - An Asian Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry - An Asian Journal\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asia.202400366\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - An Asian Journal","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asia.202400366","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合理设计具有增强氧还原反应(ORR)活性的高效、稳定、低成本的非贵金属基电催化剂已引起广泛关注。本研究通过在多壁碳纳米管(MWCNTs)上原位生长 ZIF-8 和 Fe/Co-Phen,然后在不同温度下进行热解,制备了一种新型电催化剂 Fe/Co-N-MWCNT。在热解过程中,Fe 和 Co 的加入促进了金属活性位点和 Fe-Co 合金的形成,从而促进了电子转移,提高了 ORR 活性。与 Pt/C(E1/2 = 0.854V,JL = 4.90 mA cm-2)相比,Fe/Co-N-MWCNT 表现出相当的半波电位(E1/2 = 0.812V)和更高的极限电流密度(JL = 5.37 mA cm-2)。此外,Fe/Co-N-MWCNT 很稳定,在 2000 个周期后没有出现明显变化,E1/2 仅出现 7 mV 的负偏移。安培响应测试显示,Fe/Co-N-MWCNT 在 10000 秒后的电流衰减仅约为 7.8%,而 Pt/C 则约为 18.4%。由于其出色的催化稳定性,Fe/Co-N-MWCNT 被证明是可充电锌-空气电池的理想候选材料。Fe/Co-N-MWCNT 杰出的电催化性能可归因于其较高的吡啶氮含量、独特的结构和丰富的金属活性位点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multilayer Porous Fe/Co-N-MWCNT Electrocatalyst For Rechargeable Zinc-Air Batteries

Multilayer Porous Fe/Co-N-MWCNT Electrocatalyst For Rechargeable Zinc-Air Batteries

The design of efficient, stable, low-cost non-precious metal-based electrocatalysts with enhanced oxygen reduction reaction (ORR) activity has garnered significant attention in the scientific community. This study introduces a novel electrocatalyst, Fe/Co-N-MWCNT, synthesized through the in-situ growth of ZIF-8 and Fe/Co-Phen on multi-walled carbon nanotubes (MWCNTs), followed by pyrolysis at varying temperatures to optimize its properties. The inclusion of Fe and Co during the pyrolysis process facilitated the creation of metal active sites and Fe−Co, enhancing electron transfer and ORR activity. Compared to Pt/C (E1/2=0.854 V, JL=4.90 mA cm−2), Fe/Co-N-MWCNT exhibited a similar half-wave potential (E1/2=0.812 V) and an improved limiting current density (JL=5.37 mA cm−2). Moreover, Fe/Co-N-MWCNT displayed remarkable stability, showing only a 7 mV negative shift in E1/2 after 2000 cycles. Ampere response testing indicated a current decay of only 7.8 % for Fe/Co-N-MWCNT after 10000 s, while Pt/C experienced a decay of about 18.4 %. The exceptional catalytic stability of Fe/Co-N-MWCNT positions it as a promising candidate for rechargeable zinc-air batteries, attributed to its high pyridinic nitrogen content, unique structure, and abundant metal active sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemistry - An Asian Journal
Chemistry - An Asian Journal 化学-化学综合
CiteScore
7.00
自引率
2.40%
发文量
535
审稿时长
1.3 months
期刊介绍: Chemistry—An Asian Journal is an international high-impact journal for chemistry in its broadest sense. The journal covers all aspects of chemistry from biochemistry through organic and inorganic chemistry to physical chemistry, including interdisciplinary topics. Chemistry—An Asian Journal publishes Full Papers, Communications, and Focus Reviews. A professional editorial team headed by Dr. Theresa Kueckmann and an Editorial Board (headed by Professor Susumu Kitagawa) ensure the highest quality of the peer-review process, the contents and the production of the journal. Chemistry—An Asian Journal is published on behalf of the Asian Chemical Editorial Society (ACES), an association of numerous Asian chemical societies, and supported by the Gesellschaft Deutscher Chemiker (GDCh, German Chemical Society), ChemPubSoc Europe, and the Federation of Asian Chemical Societies (FACS).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信