{"title":"具有动态毒性调节系统的可编程细菌,实现精准抗肿瘤免疫。","authors":"Leyang Wu, Lin Li, Liyuan Qiao, Chenyang Li, Shuhui Zhang, Xingpeng Yin, Zengzheng Du, Ying Sun, Jiahui Qiu, Xiaoyao Chang, Bohao Wang, Zichun Hua","doi":"10.1002/advs.202404069","DOIUrl":null,"url":null,"abstract":"<p>Engineered bacteria-mediated antitumor approaches have been proposed as promising immunotherapies for cancer. However, the off-target bacterial toxicity narrows the therapeutic window. Living microbes will benefit from their controllable immunogenicity within tumors for safer antitumor applications. In this study, a genetically encoded microbial activation strategy is reported that uses tunable and dynamic expression of surface extracellular polysaccharides to improve bacterial biocompatibility while retaining therapeutic efficacy. Based on screening of genes associated with <i>Salmonella</i> survival in macrophages, a novel attenuated <i>Salmonella</i> chassis strain AIS (<i>htrA</i> gene-deficient) highly enriched in tumors after administration and rapidly cleared from normal organs are reported. Subsequently, an engineered bacterial strain, AISI-H, is constructed based on the AIS strain and an optimized quorum-sensing regulatory system. The AISI-H strain can achieve recovery of dynamic tumor-specific bacterial virulence through a novel HTRA-RCSA axis-based and quorum-sensing synthetic gene circuit-mediated increase in extracellular polysaccharide content. These strains act “off” in normal organs to avoid unwanted immune activation and “on” in tumors for precise tumor suppression in mice. The AISI-H strain shows significant tumor inhibition and potent activation of anticancer immunity in a melanoma mouse model. The AISI-H strain exhibits excellent biocompatibility. This bacterial regulation strategy expands the applications of microbe-based antitumor therapeutics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"11 36","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202404069","citationCount":"0","resultStr":"{\"title\":\"Programmable Bacteria with Dynamic Virulence Modulation System for Precision Antitumor Immunity\",\"authors\":\"Leyang Wu, Lin Li, Liyuan Qiao, Chenyang Li, Shuhui Zhang, Xingpeng Yin, Zengzheng Du, Ying Sun, Jiahui Qiu, Xiaoyao Chang, Bohao Wang, Zichun Hua\",\"doi\":\"10.1002/advs.202404069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Engineered bacteria-mediated antitumor approaches have been proposed as promising immunotherapies for cancer. However, the off-target bacterial toxicity narrows the therapeutic window. Living microbes will benefit from their controllable immunogenicity within tumors for safer antitumor applications. In this study, a genetically encoded microbial activation strategy is reported that uses tunable and dynamic expression of surface extracellular polysaccharides to improve bacterial biocompatibility while retaining therapeutic efficacy. Based on screening of genes associated with <i>Salmonella</i> survival in macrophages, a novel attenuated <i>Salmonella</i> chassis strain AIS (<i>htrA</i> gene-deficient) highly enriched in tumors after administration and rapidly cleared from normal organs are reported. Subsequently, an engineered bacterial strain, AISI-H, is constructed based on the AIS strain and an optimized quorum-sensing regulatory system. The AISI-H strain can achieve recovery of dynamic tumor-specific bacterial virulence through a novel HTRA-RCSA axis-based and quorum-sensing synthetic gene circuit-mediated increase in extracellular polysaccharide content. These strains act “off” in normal organs to avoid unwanted immune activation and “on” in tumors for precise tumor suppression in mice. The AISI-H strain shows significant tumor inhibition and potent activation of anticancer immunity in a melanoma mouse model. The AISI-H strain exhibits excellent biocompatibility. This bacterial regulation strategy expands the applications of microbe-based antitumor therapeutics.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"11 36\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202404069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202404069\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202404069","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Programmable Bacteria with Dynamic Virulence Modulation System for Precision Antitumor Immunity
Engineered bacteria-mediated antitumor approaches have been proposed as promising immunotherapies for cancer. However, the off-target bacterial toxicity narrows the therapeutic window. Living microbes will benefit from their controllable immunogenicity within tumors for safer antitumor applications. In this study, a genetically encoded microbial activation strategy is reported that uses tunable and dynamic expression of surface extracellular polysaccharides to improve bacterial biocompatibility while retaining therapeutic efficacy. Based on screening of genes associated with Salmonella survival in macrophages, a novel attenuated Salmonella chassis strain AIS (htrA gene-deficient) highly enriched in tumors after administration and rapidly cleared from normal organs are reported. Subsequently, an engineered bacterial strain, AISI-H, is constructed based on the AIS strain and an optimized quorum-sensing regulatory system. The AISI-H strain can achieve recovery of dynamic tumor-specific bacterial virulence through a novel HTRA-RCSA axis-based and quorum-sensing synthetic gene circuit-mediated increase in extracellular polysaccharide content. These strains act “off” in normal organs to avoid unwanted immune activation and “on” in tumors for precise tumor suppression in mice. The AISI-H strain shows significant tumor inhibition and potent activation of anticancer immunity in a melanoma mouse model. The AISI-H strain exhibits excellent biocompatibility. This bacterial regulation strategy expands the applications of microbe-based antitumor therapeutics.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.