Matteo Mezzadri, Alessandro Chiesa, Luca Lepori and Stefano Carretta
{"title":"分子自旋中的单双位编码容错计算。","authors":"Matteo Mezzadri, Alessandro Chiesa, Luca Lepori and Stefano Carretta","doi":"10.1039/D4MH00454J","DOIUrl":null,"url":null,"abstract":"<p >We show that molecular spins represent ideal materials to realize a fault-tolerant quantum computer, in which all quantum operations include protection against leading (dephasing) errors. This is achieved by pursuing a qudit approach, in which logical error-corrected qubits are encoded in a single multi-level molecule (a qudit) and not in a large collection of two-level systems, as in standard codes. By preventing such an explosion of resources, this emerging way of thinking about quantum error correction makes its actual implementation using molecular spins much closer. We show how to perform all quantum computing operations (logical gates, corrections and measurements) without propagating errors. We achieve a quasi-exponential error correction with only linear qudit size growth, <em>i.e.</em> a higher efficiency than the standard approach based on stabilizer codes and concatenation.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 20","pages":" 4961-4969"},"PeriodicalIF":10.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/mh/d4mh00454j?page=search","citationCount":"0","resultStr":"{\"title\":\"Fault-tolerant computing with single-qudit encoding in a molecular spin†\",\"authors\":\"Matteo Mezzadri, Alessandro Chiesa, Luca Lepori and Stefano Carretta\",\"doi\":\"10.1039/D4MH00454J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >We show that molecular spins represent ideal materials to realize a fault-tolerant quantum computer, in which all quantum operations include protection against leading (dephasing) errors. This is achieved by pursuing a qudit approach, in which logical error-corrected qubits are encoded in a single multi-level molecule (a qudit) and not in a large collection of two-level systems, as in standard codes. By preventing such an explosion of resources, this emerging way of thinking about quantum error correction makes its actual implementation using molecular spins much closer. We show how to perform all quantum computing operations (logical gates, corrections and measurements) without propagating errors. We achieve a quasi-exponential error correction with only linear qudit size growth, <em>i.e.</em> a higher efficiency than the standard approach based on stabilizer codes and concatenation.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 20\",\"pages\":\" 4961-4969\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/mh/d4mh00454j?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh00454j\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mh/d4mh00454j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Fault-tolerant computing with single-qudit encoding in a molecular spin†
We show that molecular spins represent ideal materials to realize a fault-tolerant quantum computer, in which all quantum operations include protection against leading (dephasing) errors. This is achieved by pursuing a qudit approach, in which logical error-corrected qubits are encoded in a single multi-level molecule (a qudit) and not in a large collection of two-level systems, as in standard codes. By preventing such an explosion of resources, this emerging way of thinking about quantum error correction makes its actual implementation using molecular spins much closer. We show how to perform all quantum computing operations (logical gates, corrections and measurements) without propagating errors. We achieve a quasi-exponential error correction with only linear qudit size growth, i.e. a higher efficiency than the standard approach based on stabilizer codes and concatenation.