Rimpi Dawar, Shubham Narang, Kaustava Bhattacharyya, Padinhare M Aiswarya, Dimple P Dutta, Ratikanta Mishra
{"title":"了解 NaxMnO2 系统:热力学和 XPS 方法。","authors":"Rimpi Dawar, Shubham Narang, Kaustava Bhattacharyya, Padinhare M Aiswarya, Dimple P Dutta, Ratikanta Mishra","doi":"10.1021/acs.inorgchem.4c01539","DOIUrl":null,"url":null,"abstract":"<p><p>The Na<sub><i>x</i></sub>MnO<sub>2</sub> system is an important class of materials with potential applications in rechargeable batteries, supercapacitors, catalysts, and gas sensors. This work reports the synthesis of Na<sub><i>x</i></sub>MnO<sub>2</sub> (<i>x</i> = 0.39, 0.44, 0.48, 0.66, and 0.70) compounds and their characterization by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy (IS) techniques. The compounds in this series exhibit a significant variation in their structures with the extent of Na-content. The change in the nature of bonding with increasing Na content was investigated, and its effect on material stability as well as electrotransport properties was investigated. A detailed thermodynamic evaluation of these materials was carried out employing calorimetric techniques, and the data were correlated with changes in the chemical environment around the Na ion. This analysis is crucial for predicting the thermodynamic stability of Na<sub><i>x</i></sub>MnO<sub>2</sub> compounds under different environments for their applications in Na-ion batteries.</p>","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding the Na<sub><i>x</i></sub>MnO<sub>2</sub> System: A Thermodynamics and XPS Approach.\",\"authors\":\"Rimpi Dawar, Shubham Narang, Kaustava Bhattacharyya, Padinhare M Aiswarya, Dimple P Dutta, Ratikanta Mishra\",\"doi\":\"10.1021/acs.inorgchem.4c01539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Na<sub><i>x</i></sub>MnO<sub>2</sub> system is an important class of materials with potential applications in rechargeable batteries, supercapacitors, catalysts, and gas sensors. This work reports the synthesis of Na<sub><i>x</i></sub>MnO<sub>2</sub> (<i>x</i> = 0.39, 0.44, 0.48, 0.66, and 0.70) compounds and their characterization by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy (IS) techniques. The compounds in this series exhibit a significant variation in their structures with the extent of Na-content. The change in the nature of bonding with increasing Na content was investigated, and its effect on material stability as well as electrotransport properties was investigated. A detailed thermodynamic evaluation of these materials was carried out employing calorimetric techniques, and the data were correlated with changes in the chemical environment around the Na ion. This analysis is crucial for predicting the thermodynamic stability of Na<sub><i>x</i></sub>MnO<sub>2</sub> compounds under different environments for their applications in Na-ion batteries.</p>\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.4c01539\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.4c01539","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/25 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
NaxMnO2 系统是一类重要的材料,有望应用于充电电池、超级电容器、催化剂和气体传感器。本研究报告介绍了 NaxMnO2(x = 0.39、0.44、0.48、0.66 和 0.70)化合物的合成及其通过粉末 X 射线衍射 (XRD)、X 射线光电子能谱 (XPS) 和阻抗能谱 (IS) 技术进行的表征。该系列化合物的结构随着 Na 含量的增加而发生了显著变化。研究人员调查了随着 Na 含量的增加,键合性质的变化,以及这种变化对材料稳定性和电传输特性的影响。利用量热技术对这些材料进行了详细的热力学评估,并将数据与 Na 离子周围化学环境的变化联系起来。这项分析对于预测 NaxMnO2 复合物在不同环境下的热力学稳定性至关重要,有助于它们在镍离子电池中的应用。
Understanding the NaxMnO2 System: A Thermodynamics and XPS Approach.
The NaxMnO2 system is an important class of materials with potential applications in rechargeable batteries, supercapacitors, catalysts, and gas sensors. This work reports the synthesis of NaxMnO2 (x = 0.39, 0.44, 0.48, 0.66, and 0.70) compounds and their characterization by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and impedance spectroscopy (IS) techniques. The compounds in this series exhibit a significant variation in their structures with the extent of Na-content. The change in the nature of bonding with increasing Na content was investigated, and its effect on material stability as well as electrotransport properties was investigated. A detailed thermodynamic evaluation of these materials was carried out employing calorimetric techniques, and the data were correlated with changes in the chemical environment around the Na ion. This analysis is crucial for predicting the thermodynamic stability of NaxMnO2 compounds under different environments for their applications in Na-ion batteries.
期刊介绍:
Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.