{"title":"十倍体蕺菜基因组组装为蕺菜的进化和生物碱的生物合成提供了启示","authors":"Peng Huang, Zhu Li, Huan Wang, Jinqiang Huang, Guifeng Tan, Yue Fu, Xiubin Liu, Shang Zheng, Peng Xu, Mengshan Sun, Jianguo Zeng","doi":"10.1093/hr/uhae203","DOIUrl":null,"url":null,"abstract":"Houttuynia cordata Thunb., commonly known as yuxingcao in China, is known for its characteristic fishy smell and is widely recognized as an important herb and vegetable in many parts of Asia. However, the lack of genomic information on H. cordata limits the understanding of its population structure, genetic diversity and biosynthesis of medicinal compounds. Here, we used single-molecule sequencing, Illumina paired-end sequencing and chromosome conformation capture technology to construct the first chromosome-scale decaploid H. cordata reference genome. The genome assembly was 2.63 Gb in size, with 1,348 contigs and a contig N50 of 21.94 Mb further clustered and ordered into 88 pseudochromosomes based on Hi-C analysis. The results of genome evolution analysis showed that H. citrina underwent a whole-genome duplication (WGD) event approximately 17 million years ago, and an additional WGD event occurred 3.3 million years ago, which may be the main factor leading to the high abundance of multiple copies of orthologous genes. Here, transcriptome sequencing across five different tissues revealed significant expansion and distinct expression patterns of key gene families, such as L-amino acid/L-tryptophan decarboxylase and strictosidine synthase, which are essential for the biosynthesis of isoquinoline and indole alkaloids, along with the identification of genes such as TTM3, which is critical for root development. This study constructed the first decaploid medicinal plant genome and revealed the genome evolution and polyploidization events of H. cordata.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Genome Assembly of decaploid Houttuynia cordata Provides Insights into the evolution of Houttuynia and the biosynthesis of alkaloids\",\"authors\":\"Peng Huang, Zhu Li, Huan Wang, Jinqiang Huang, Guifeng Tan, Yue Fu, Xiubin Liu, Shang Zheng, Peng Xu, Mengshan Sun, Jianguo Zeng\",\"doi\":\"10.1093/hr/uhae203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Houttuynia cordata Thunb., commonly known as yuxingcao in China, is known for its characteristic fishy smell and is widely recognized as an important herb and vegetable in many parts of Asia. However, the lack of genomic information on H. cordata limits the understanding of its population structure, genetic diversity and biosynthesis of medicinal compounds. Here, we used single-molecule sequencing, Illumina paired-end sequencing and chromosome conformation capture technology to construct the first chromosome-scale decaploid H. cordata reference genome. The genome assembly was 2.63 Gb in size, with 1,348 contigs and a contig N50 of 21.94 Mb further clustered and ordered into 88 pseudochromosomes based on Hi-C analysis. The results of genome evolution analysis showed that H. citrina underwent a whole-genome duplication (WGD) event approximately 17 million years ago, and an additional WGD event occurred 3.3 million years ago, which may be the main factor leading to the high abundance of multiple copies of orthologous genes. Here, transcriptome sequencing across five different tissues revealed significant expansion and distinct expression patterns of key gene families, such as L-amino acid/L-tryptophan decarboxylase and strictosidine synthase, which are essential for the biosynthesis of isoquinoline and indole alkaloids, along with the identification of genes such as TTM3, which is critical for root development. This study constructed the first decaploid medicinal plant genome and revealed the genome evolution and polyploidization events of H. cordata.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae203\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae203","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
A Genome Assembly of decaploid Houttuynia cordata Provides Insights into the evolution of Houttuynia and the biosynthesis of alkaloids
Houttuynia cordata Thunb., commonly known as yuxingcao in China, is known for its characteristic fishy smell and is widely recognized as an important herb and vegetable in many parts of Asia. However, the lack of genomic information on H. cordata limits the understanding of its population structure, genetic diversity and biosynthesis of medicinal compounds. Here, we used single-molecule sequencing, Illumina paired-end sequencing and chromosome conformation capture technology to construct the first chromosome-scale decaploid H. cordata reference genome. The genome assembly was 2.63 Gb in size, with 1,348 contigs and a contig N50 of 21.94 Mb further clustered and ordered into 88 pseudochromosomes based on Hi-C analysis. The results of genome evolution analysis showed that H. citrina underwent a whole-genome duplication (WGD) event approximately 17 million years ago, and an additional WGD event occurred 3.3 million years ago, which may be the main factor leading to the high abundance of multiple copies of orthologous genes. Here, transcriptome sequencing across five different tissues revealed significant expansion and distinct expression patterns of key gene families, such as L-amino acid/L-tryptophan decarboxylase and strictosidine synthase, which are essential for the biosynthesis of isoquinoline and indole alkaloids, along with the identification of genes such as TTM3, which is critical for root development. This study constructed the first decaploid medicinal plant genome and revealed the genome evolution and polyploidization events of H. cordata.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.