{"title":"整合 QTL 图谱和转录组学,破译甘蓝型油菜中甾醇代谢的遗传结构","authors":"Yiyi Xiong, Guangyuan Lu, Huaixin Li, Jianjie He, Shipeng Fan, Shuxiang Yan, Liangxiao Zhang, Haibo Jia, Maoteng Li","doi":"10.1093/hr/uhae196","DOIUrl":null,"url":null,"abstract":"Sterols are secondary metabolites commonly found in rapeseed that play crucial physiological roles in plants and also benefit human health. Consequently, unraveling the genetic basis of sterol synthesis in rapeseed is highly important. In this study, 21 individual sterols, as well as total sterol content (TS) were detected in a double haploid (DH) population of Brassica napus, and a total of 24 QTL and 157 mQTL were identified that were associated with TS and different individual sterols. Time-series transcriptomic analysis showed that the differentially expressed genes (DEGs) involved in sterol and lipid biosynthesis pathways were enriched. Additionally, a regulatory network between sterol-related DEGs and transcription factors (TFs) was established using coexpression analysis. Some candidate genes were identified with the integration of transcriptomic analysis and QTL mapping, and the key candidate gene BnSQS1.C03 was selected for further functional analysis. BnSQS1.C03 demonstrated squalene synthase activity in vitro and increased the TS by 3.8% when overexpressed in Arabidopsis. The present results provide new insights into sterol regulatory pathways and a valuable genetic basis for breeding rapeseed varieties with high sterol content in the future.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":null,"pages":null},"PeriodicalIF":8.7000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating QTL Mapping and Transcriptomics to Decipher the Genetic Architecture of Sterol Metabolism in Brassica napus L\",\"authors\":\"Yiyi Xiong, Guangyuan Lu, Huaixin Li, Jianjie He, Shipeng Fan, Shuxiang Yan, Liangxiao Zhang, Haibo Jia, Maoteng Li\",\"doi\":\"10.1093/hr/uhae196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sterols are secondary metabolites commonly found in rapeseed that play crucial physiological roles in plants and also benefit human health. Consequently, unraveling the genetic basis of sterol synthesis in rapeseed is highly important. In this study, 21 individual sterols, as well as total sterol content (TS) were detected in a double haploid (DH) population of Brassica napus, and a total of 24 QTL and 157 mQTL were identified that were associated with TS and different individual sterols. Time-series transcriptomic analysis showed that the differentially expressed genes (DEGs) involved in sterol and lipid biosynthesis pathways were enriched. Additionally, a regulatory network between sterol-related DEGs and transcription factors (TFs) was established using coexpression analysis. Some candidate genes were identified with the integration of transcriptomic analysis and QTL mapping, and the key candidate gene BnSQS1.C03 was selected for further functional analysis. BnSQS1.C03 demonstrated squalene synthase activity in vitro and increased the TS by 3.8% when overexpressed in Arabidopsis. The present results provide new insights into sterol regulatory pathways and a valuable genetic basis for breeding rapeseed varieties with high sterol content in the future.\",\"PeriodicalId\":13179,\"journal\":{\"name\":\"Horticulture Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horticulture Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1093/hr/uhae196\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhae196","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Integrating QTL Mapping and Transcriptomics to Decipher the Genetic Architecture of Sterol Metabolism in Brassica napus L
Sterols are secondary metabolites commonly found in rapeseed that play crucial physiological roles in plants and also benefit human health. Consequently, unraveling the genetic basis of sterol synthesis in rapeseed is highly important. In this study, 21 individual sterols, as well as total sterol content (TS) were detected in a double haploid (DH) population of Brassica napus, and a total of 24 QTL and 157 mQTL were identified that were associated with TS and different individual sterols. Time-series transcriptomic analysis showed that the differentially expressed genes (DEGs) involved in sterol and lipid biosynthesis pathways were enriched. Additionally, a regulatory network between sterol-related DEGs and transcription factors (TFs) was established using coexpression analysis. Some candidate genes were identified with the integration of transcriptomic analysis and QTL mapping, and the key candidate gene BnSQS1.C03 was selected for further functional analysis. BnSQS1.C03 demonstrated squalene synthase activity in vitro and increased the TS by 3.8% when overexpressed in Arabidopsis. The present results provide new insights into sterol regulatory pathways and a valuable genetic basis for breeding rapeseed varieties with high sterol content in the future.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.