人为因素对 2022 年长江流域复合热浪和干旱事件的影响

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES
Dong Chen, Shaobo Qiao, Jie Yang, Shankai Tang, Dongdong Zuo, Guolin Feng
{"title":"人为因素对 2022 年长江流域复合热浪和干旱事件的影响","authors":"Dong Chen, Shaobo Qiao, Jie Yang, Shankai Tang, Dongdong Zuo, Guolin Feng","doi":"10.1038/s41612-024-00720-3","DOIUrl":null,"url":null,"abstract":"In August 2022, an unprecedented compound heatwave and drought event (CHDE) lasting 24 days occurred in the Yangtze River valley (YRV), leading to a severe reduction of the crop, fresh water, and power supply. We constructed a joint cumulative probability distribution of heatwave and drought intensity, and found that the lowest probability-based index (PI) of 0.06 in 2022 was estimated as a 1-in-662-year event over the 1961–2022 climate. We then detected the fingerprint of greenhouse gas forcing to the observed PI in a generalized extreme value framework, but not the aerosol forcing, suggesting the leading contribution of greenhouse gas forcing on such extreme CHDE. Furthermore, anthropogenic influence had increased the probability of such CHDE by more than 10 times compared to the counterfactual climate. Also, the PI decreased from about 0.30 at the present climate to about 0.14 at the 3 °C global warming level, indicating that CHDE will become more extreme over YRV.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00720-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event\",\"authors\":\"Dong Chen, Shaobo Qiao, Jie Yang, Shankai Tang, Dongdong Zuo, Guolin Feng\",\"doi\":\"10.1038/s41612-024-00720-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In August 2022, an unprecedented compound heatwave and drought event (CHDE) lasting 24 days occurred in the Yangtze River valley (YRV), leading to a severe reduction of the crop, fresh water, and power supply. We constructed a joint cumulative probability distribution of heatwave and drought intensity, and found that the lowest probability-based index (PI) of 0.06 in 2022 was estimated as a 1-in-662-year event over the 1961–2022 climate. We then detected the fingerprint of greenhouse gas forcing to the observed PI in a generalized extreme value framework, but not the aerosol forcing, suggesting the leading contribution of greenhouse gas forcing on such extreme CHDE. Furthermore, anthropogenic influence had increased the probability of such CHDE by more than 10 times compared to the counterfactual climate. Also, the PI decreased from about 0.30 at the present climate to about 0.14 at the 3 °C global warming level, indicating that CHDE will become more extreme over YRV.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00720-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00720-3\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00720-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2022 年 8 月,长江流域发生了持续 24 天的史无前例的复合热浪和干旱事件(CHDE),导致农作物、淡水和电力供应严重减少。我们构建了热浪和干旱强度的联合累积概率分布,发现 2022 年的最低概率指数(PI)为 0.06,估计为 1961-2022 年气候中 662 年一遇的事件。然后,我们在一个广义极值框架中检测了温室气体对观测到的 PI 的影响,而不是气溶胶的影响,这表明温室气体的影响对这种极端的 CHDE 起着主导作用。此外,与反事实气候相比,人类活动的影响使出现此类 CHDE 的概率增加了 10 倍以上。同时,PI 从目前气候下的约 0.30 降至全球变暖 3 °C 水平下的约 0.14,表明在 YRV 期间 CHDE 将变得更加极端。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event

Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event

Contribution of anthropogenic influence to the 2022-like Yangtze River valley compound heatwave and drought event
In August 2022, an unprecedented compound heatwave and drought event (CHDE) lasting 24 days occurred in the Yangtze River valley (YRV), leading to a severe reduction of the crop, fresh water, and power supply. We constructed a joint cumulative probability distribution of heatwave and drought intensity, and found that the lowest probability-based index (PI) of 0.06 in 2022 was estimated as a 1-in-662-year event over the 1961–2022 climate. We then detected the fingerprint of greenhouse gas forcing to the observed PI in a generalized extreme value framework, but not the aerosol forcing, suggesting the leading contribution of greenhouse gas forcing on such extreme CHDE. Furthermore, anthropogenic influence had increased the probability of such CHDE by more than 10 times compared to the counterfactual climate. Also, the PI decreased from about 0.30 at the present climate to about 0.14 at the 3 °C global warming level, indicating that CHDE will become more extreme over YRV.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信