碳化硅中的硅空位中心:确定集成量子光子学的内在自旋动力学

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Di Liu, Florian Kaiser, Vladislav Bushmakin, Erik Hesselmeier, Timo Steidl, Takeshi Ohshima, Nguyen Tien Son, Jawad Ul-Hassan, Öney O. Soykal, Jörg Wrachtrup
{"title":"碳化硅中的硅空位中心:确定集成量子光子学的内在自旋动力学","authors":"Di Liu, Florian Kaiser, Vladislav Bushmakin, Erik Hesselmeier, Timo Steidl, Takeshi Ohshima, Nguyen Tien Son, Jawad Ul-Hassan, Öney O. Soykal, Jörg Wrachtrup","doi":"10.1038/s41534-024-00861-6","DOIUrl":null,"url":null,"abstract":"<p>The negatively charged silicon vacancy center (<span>\\({{\\rm{V}}}_{{\\rm{Si}}}^{-}\\)</span>) in silicon carbide (SiC) is an emerging color center for quantum technology covering quantum sensing, communication, and computing. Yet, limited information currently available on the internal spin-optical dynamics of these color centers prevents us from achieving the optimal operation conditions and reaching the maximum performance especially when integrated within quantum photonics. Here, we establish all the relevant intrinsic spin dynamics of the <span>\\({{\\rm{V}}}_{{\\rm{Si}}}^{-}\\)</span> center at cubic lattice site (V2) in 4H-SiC by an in-depth electronic fine structure modeling including the intersystem-crossing and deshelving mechanisms. With carefully designed spin-dependent measurements, we obtain all the previously unknown spin-selective radiative and non-radiative decay rates. To showcase the relevance of our work for integrated quantum photonics, we use the obtained rates to propose a realistic implementation of time-bin entangled multi-photon GHZ and cluster state generation. We find that up to three-photon GHZ or cluster states are readily within reach using the existing nanophotonic cavity technology.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The silicon vacancy centers in SiC: determination of intrinsic spin dynamics for integrated quantum photonics\",\"authors\":\"Di Liu, Florian Kaiser, Vladislav Bushmakin, Erik Hesselmeier, Timo Steidl, Takeshi Ohshima, Nguyen Tien Son, Jawad Ul-Hassan, Öney O. Soykal, Jörg Wrachtrup\",\"doi\":\"10.1038/s41534-024-00861-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The negatively charged silicon vacancy center (<span>\\\\({{\\\\rm{V}}}_{{\\\\rm{Si}}}^{-}\\\\)</span>) in silicon carbide (SiC) is an emerging color center for quantum technology covering quantum sensing, communication, and computing. Yet, limited information currently available on the internal spin-optical dynamics of these color centers prevents us from achieving the optimal operation conditions and reaching the maximum performance especially when integrated within quantum photonics. Here, we establish all the relevant intrinsic spin dynamics of the <span>\\\\({{\\\\rm{V}}}_{{\\\\rm{Si}}}^{-}\\\\)</span> center at cubic lattice site (V2) in 4H-SiC by an in-depth electronic fine structure modeling including the intersystem-crossing and deshelving mechanisms. With carefully designed spin-dependent measurements, we obtain all the previously unknown spin-selective radiative and non-radiative decay rates. To showcase the relevance of our work for integrated quantum photonics, we use the obtained rates to propose a realistic implementation of time-bin entangled multi-photon GHZ and cluster state generation. We find that up to three-photon GHZ or cluster states are readily within reach using the existing nanophotonic cavity technology.</p>\",\"PeriodicalId\":19212,\"journal\":{\"name\":\"npj Quantum Information\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Quantum Information\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41534-024-00861-6\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00861-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

碳化硅(SiC)中带负电荷的硅空位中心({{\rm{V}}}_{\rm{Si}}}^{-}\)是量子技术中新兴的色彩中心,其应用范围涵盖量子传感、通信和计算。然而,目前关于这些颜色中心内部自旋光学动力学的信息有限,这阻碍了我们实现最佳运行条件和达到最高性能,尤其是在量子光子集成时。在这里,我们通过深入的电子精细结构建模,包括系统间交叉和脱架机制,建立了 4H-SiC 中立方晶格位点 (V2) 上的\({{\rm{V}}}_{{\rm{Si}}^{-}\) 中心的所有相关内在自旋动力学。通过精心设计的自旋相关测量,我们获得了所有以前未知的自旋选择性辐射和非辐射衰变率。为了展示我们的工作与集成量子光子学的相关性,我们利用所获得的衰减率提出了一种时带纠缠多光子 GHZ 和簇态生成的现实实现方法。我们发现,利用现有的纳米光子腔技术,可以轻松实现高达三光子的 GHZ 或团簇状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The silicon vacancy centers in SiC: determination of intrinsic spin dynamics for integrated quantum photonics

The silicon vacancy centers in SiC: determination of intrinsic spin dynamics for integrated quantum photonics

The negatively charged silicon vacancy center (\({{\rm{V}}}_{{\rm{Si}}}^{-}\)) in silicon carbide (SiC) is an emerging color center for quantum technology covering quantum sensing, communication, and computing. Yet, limited information currently available on the internal spin-optical dynamics of these color centers prevents us from achieving the optimal operation conditions and reaching the maximum performance especially when integrated within quantum photonics. Here, we establish all the relevant intrinsic spin dynamics of the \({{\rm{V}}}_{{\rm{Si}}}^{-}\) center at cubic lattice site (V2) in 4H-SiC by an in-depth electronic fine structure modeling including the intersystem-crossing and deshelving mechanisms. With carefully designed spin-dependent measurements, we obtain all the previously unknown spin-selective radiative and non-radiative decay rates. To showcase the relevance of our work for integrated quantum photonics, we use the obtained rates to propose a realistic implementation of time-bin entangled multi-photon GHZ and cluster state generation. We find that up to three-photon GHZ or cluster states are readily within reach using the existing nanophotonic cavity technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信