Lu Lv;Dongyang Xu;Rose Qingyang Hu;Yinghui Ye;Long Yang;Xianfu Lei;Xianbin Wang;Dong In Kim;Arumugam Nallanathan
{"title":"使用物理层安全技术保护下一代多路访问:教程","authors":"Lu Lv;Dongyang Xu;Rose Qingyang Hu;Yinghui Ye;Long Yang;Xianfu Lei;Xianbin Wang;Dong In Kim;Arumugam Nallanathan","doi":"10.1109/JPROC.2024.3420127","DOIUrl":null,"url":null,"abstract":"Driven by the ever-increasing requirements of ultrahigh spectral efficiency, ultralow latency, and massive connectivity, the forefront of wireless research calls for the design of advanced next-generation multiple access schemes to facilitate the provisioning of these stringent demands. This inspires the embrace of nonorthogonal multiple access (NOMA) in future wireless communication networks. Nevertheless, the support of massive access via NOMA leads to additional security threats due to the open nature of the air interface, the broadcast characteristic of radio propagation, and the intertwined relationship among paired NOMA users. To address this specific challenge, the superimposed transmission of NOMA can be explored as new opportunities for security-aware design; for example, multiuser interference inherent in NOMA can be constructively engineered to benefit communication secrecy and privacy. The purpose of this tutorial is to provide a comprehensive overview of the state-of-the-art physical layer security techniques that guarantee wireless security and privacy for NOMA networks, along with the opportunities, technical challenges, and future research trends.","PeriodicalId":20556,"journal":{"name":"Proceedings of the IEEE","volume":"112 9","pages":"1421-1466"},"PeriodicalIF":23.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605790","citationCount":"0","resultStr":"{\"title\":\"Safeguarding Next-Generation Multiple Access Using Physical Layer Security Techniques: A Tutorial\",\"authors\":\"Lu Lv;Dongyang Xu;Rose Qingyang Hu;Yinghui Ye;Long Yang;Xianfu Lei;Xianbin Wang;Dong In Kim;Arumugam Nallanathan\",\"doi\":\"10.1109/JPROC.2024.3420127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven by the ever-increasing requirements of ultrahigh spectral efficiency, ultralow latency, and massive connectivity, the forefront of wireless research calls for the design of advanced next-generation multiple access schemes to facilitate the provisioning of these stringent demands. This inspires the embrace of nonorthogonal multiple access (NOMA) in future wireless communication networks. Nevertheless, the support of massive access via NOMA leads to additional security threats due to the open nature of the air interface, the broadcast characteristic of radio propagation, and the intertwined relationship among paired NOMA users. To address this specific challenge, the superimposed transmission of NOMA can be explored as new opportunities for security-aware design; for example, multiuser interference inherent in NOMA can be constructively engineered to benefit communication secrecy and privacy. The purpose of this tutorial is to provide a comprehensive overview of the state-of-the-art physical layer security techniques that guarantee wireless security and privacy for NOMA networks, along with the opportunities, technical challenges, and future research trends.\",\"PeriodicalId\":20556,\"journal\":{\"name\":\"Proceedings of the IEEE\",\"volume\":\"112 9\",\"pages\":\"1421-1466\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10605790\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10605790/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10605790/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Safeguarding Next-Generation Multiple Access Using Physical Layer Security Techniques: A Tutorial
Driven by the ever-increasing requirements of ultrahigh spectral efficiency, ultralow latency, and massive connectivity, the forefront of wireless research calls for the design of advanced next-generation multiple access schemes to facilitate the provisioning of these stringent demands. This inspires the embrace of nonorthogonal multiple access (NOMA) in future wireless communication networks. Nevertheless, the support of massive access via NOMA leads to additional security threats due to the open nature of the air interface, the broadcast characteristic of radio propagation, and the intertwined relationship among paired NOMA users. To address this specific challenge, the superimposed transmission of NOMA can be explored as new opportunities for security-aware design; for example, multiuser interference inherent in NOMA can be constructively engineered to benefit communication secrecy and privacy. The purpose of this tutorial is to provide a comprehensive overview of the state-of-the-art physical layer security techniques that guarantee wireless security and privacy for NOMA networks, along with the opportunities, technical challenges, and future research trends.
期刊介绍:
Proceedings of the IEEE is the leading journal to provide in-depth review, survey, and tutorial coverage of the technical developments in electronics, electrical and computer engineering, and computer science. Consistently ranked as one of the top journals by Impact Factor, Article Influence Score and more, the journal serves as a trusted resource for engineers around the world.