高通量设计用于绿色制氢的等温氧化还原活化二氧化碳吸附剂的复合氧化物

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Runxia Cai, Kunran Yang, Xijun Wang, Mahe Rukh, Azin Saberi Bosari, Eric Giavedoni, Alexandra Pierce, Leo Brody, Wentao Tang, Phillip R. Westmoreland and Fanxing Li
{"title":"高通量设计用于绿色制氢的等温氧化还原活化二氧化碳吸附剂的复合氧化物","authors":"Runxia Cai, Kunran Yang, Xijun Wang, Mahe Rukh, Azin Saberi Bosari, Eric Giavedoni, Alexandra Pierce, Leo Brody, Wentao Tang, Phillip R. Westmoreland and Fanxing Li","doi":"10.1039/D4EE02119C","DOIUrl":null,"url":null,"abstract":"<p >Sorption-enhanced reforming and gasification (SERG) offers a promising approach to intensify hydrogen production from carbonaceous feedstocks. However, conventional sorbents require substantial temperature increases for the endothermic CO<small><sub>2</sub></small> release step and are prone to deactivation. This study introduces a new class of redox-activated sorbents capable of stable isothermal operation and tunable heats of reactions, thereby facilitating an efficient reactive separation scheme. Using plane-wave density functional theory (DFT) calculations of structures and free energies, we screened 1225 perovskite-structured sorbent candidates, followed with extensive experimental validation. An effective descriptor, (Δ<em>G</em><small><sub>abs</sub></small> + Δ<em>G</em><small><sub>reg</sub></small>), was identified to expedite sorbent optimization. The advanced sorbents showed reversible, isothermal carbonation of up to 78% of the A-site cation, permitting isothermal SERG or “iSERG”. Their versatility was demonstrated in a fluidized bed for woody biomass gasification and a packed bed for biogas conversion, yielding hydrogen-enriched (73 vol%) syngas from biomass and 95+% pure H<small><sub>2</sub></small> from biogas. Our results also support integrated CO<small><sub>2</sub></small> capture to produce carbon-negative hydrogen products.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 17","pages":" 6279-6290"},"PeriodicalIF":30.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee02119c?page=search","citationCount":"0","resultStr":"{\"title\":\"High-throughput design of complex oxides as isothermal, redox-activated CO2 sorbents for green hydrogen generation†\",\"authors\":\"Runxia Cai, Kunran Yang, Xijun Wang, Mahe Rukh, Azin Saberi Bosari, Eric Giavedoni, Alexandra Pierce, Leo Brody, Wentao Tang, Phillip R. Westmoreland and Fanxing Li\",\"doi\":\"10.1039/D4EE02119C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Sorption-enhanced reforming and gasification (SERG) offers a promising approach to intensify hydrogen production from carbonaceous feedstocks. However, conventional sorbents require substantial temperature increases for the endothermic CO<small><sub>2</sub></small> release step and are prone to deactivation. This study introduces a new class of redox-activated sorbents capable of stable isothermal operation and tunable heats of reactions, thereby facilitating an efficient reactive separation scheme. Using plane-wave density functional theory (DFT) calculations of structures and free energies, we screened 1225 perovskite-structured sorbent candidates, followed with extensive experimental validation. An effective descriptor, (Δ<em>G</em><small><sub>abs</sub></small> + Δ<em>G</em><small><sub>reg</sub></small>), was identified to expedite sorbent optimization. The advanced sorbents showed reversible, isothermal carbonation of up to 78% of the A-site cation, permitting isothermal SERG or “iSERG”. Their versatility was demonstrated in a fluidized bed for woody biomass gasification and a packed bed for biogas conversion, yielding hydrogen-enriched (73 vol%) syngas from biomass and 95+% pure H<small><sub>2</sub></small> from biogas. Our results also support integrated CO<small><sub>2</sub></small> capture to produce carbon-negative hydrogen products.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 17\",\"pages\":\" 6279-6290\"},\"PeriodicalIF\":30.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/ee/d4ee02119c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02119c\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ee/d4ee02119c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

吸附强化重整和气化(SERG)为加强碳质原料的氢气生产提供了一种前景广阔的方法。然而,传统的吸附剂在释放二氧化碳的内热步骤中需要大幅升温,而且容易失活。本研究介绍了一类新型氧化还原活化吸附剂,该吸附剂能够稳定等温操作,反应热可调,从而促进了高效的反应分离方案。利用平面波密度泛函理论(DFT)计算结构和自由能,我们筛选出了 1225 种包晶石结构的候选吸附剂,并进行了广泛的实验验证。我们确定了一个有效的描述符(ΔGabs + ΔGreg),以加快吸附剂的优化。先进的吸附剂可对高达 78% 的 A 位阳离子进行可逆的等温碳化,从而实现等温 SERG 或 "iSERG"。它们的多功能性在流化床木质生物质气化和填料床沼气转化中得到了验证,从生物质中产生了富氢(76 vol.%)合成气,从沼气中产生了 95% 以上的纯 H2。我们的研究结果还支持综合二氧化碳捕集,以生产负碳氢气产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-throughput design of complex oxides as isothermal, redox-activated CO2 sorbents for green hydrogen generation†

High-throughput design of complex oxides as isothermal, redox-activated CO2 sorbents for green hydrogen generation†

Sorption-enhanced reforming and gasification (SERG) offers a promising approach to intensify hydrogen production from carbonaceous feedstocks. However, conventional sorbents require substantial temperature increases for the endothermic CO2 release step and are prone to deactivation. This study introduces a new class of redox-activated sorbents capable of stable isothermal operation and tunable heats of reactions, thereby facilitating an efficient reactive separation scheme. Using plane-wave density functional theory (DFT) calculations of structures and free energies, we screened 1225 perovskite-structured sorbent candidates, followed with extensive experimental validation. An effective descriptor, (ΔGabs + ΔGreg), was identified to expedite sorbent optimization. The advanced sorbents showed reversible, isothermal carbonation of up to 78% of the A-site cation, permitting isothermal SERG or “iSERG”. Their versatility was demonstrated in a fluidized bed for woody biomass gasification and a packed bed for biogas conversion, yielding hydrogen-enriched (73 vol%) syngas from biomass and 95+% pure H2 from biogas. Our results also support integrated CO2 capture to produce carbon-negative hydrogen products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信