{"title":"人类活动对西欧附近热带气旋的影响","authors":"Shuai Wang, Hiroyuki Murakami, William Cooke","doi":"10.1038/s41612-024-00721-2","DOIUrl":null,"url":null,"abstract":"There is less consensus on whether human activities have significantly altered tropical cyclone (TC) statistics, given the relatively short duration of reliable observed records. Understanding and projecting TC frequency change is more challenging in certain coastal regions with lower TC activity yet high exposure, such as Western Europe. Here, we show, with large-ensemble simulations, that the observed increase in TC frequency near Western Europe from 1966 to 2020 is likely linked to the anthropogenic aerosol effect. Under a future scenario featuring regionally controlled aerosol emissions and substantially increased greenhouse gas concentrations (Shared Socioeconomic Pathway 5-85), our simulations show a potential decrease in TC frequency near Western Europe by the end of the 21st century. These contrasting trends in historical and future TC frequencies are primarily due to the rise for 1966–2020 and potentially subsequent fall for 2030–2100 in TC genesis frequency in the North Atlantic. The response of large-scale environmental conditions to anthropogenic forcing is found to be crucial in explaining the historical and future changes in TC frequency near Western Europe.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":null,"pages":null},"PeriodicalIF":8.5000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00721-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Anthropogenic effects on tropical cyclones near Western Europe\",\"authors\":\"Shuai Wang, Hiroyuki Murakami, William Cooke\",\"doi\":\"10.1038/s41612-024-00721-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is less consensus on whether human activities have significantly altered tropical cyclone (TC) statistics, given the relatively short duration of reliable observed records. Understanding and projecting TC frequency change is more challenging in certain coastal regions with lower TC activity yet high exposure, such as Western Europe. Here, we show, with large-ensemble simulations, that the observed increase in TC frequency near Western Europe from 1966 to 2020 is likely linked to the anthropogenic aerosol effect. Under a future scenario featuring regionally controlled aerosol emissions and substantially increased greenhouse gas concentrations (Shared Socioeconomic Pathway 5-85), our simulations show a potential decrease in TC frequency near Western Europe by the end of the 21st century. These contrasting trends in historical and future TC frequencies are primarily due to the rise for 1966–2020 and potentially subsequent fall for 2030–2100 in TC genesis frequency in the North Atlantic. The response of large-scale environmental conditions to anthropogenic forcing is found to be crucial in explaining the historical and future changes in TC frequency near Western Europe.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00721-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00721-2\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00721-2","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Anthropogenic effects on tropical cyclones near Western Europe
There is less consensus on whether human activities have significantly altered tropical cyclone (TC) statistics, given the relatively short duration of reliable observed records. Understanding and projecting TC frequency change is more challenging in certain coastal regions with lower TC activity yet high exposure, such as Western Europe. Here, we show, with large-ensemble simulations, that the observed increase in TC frequency near Western Europe from 1966 to 2020 is likely linked to the anthropogenic aerosol effect. Under a future scenario featuring regionally controlled aerosol emissions and substantially increased greenhouse gas concentrations (Shared Socioeconomic Pathway 5-85), our simulations show a potential decrease in TC frequency near Western Europe by the end of the 21st century. These contrasting trends in historical and future TC frequencies are primarily due to the rise for 1966–2020 and potentially subsequent fall for 2030–2100 in TC genesis frequency in the North Atlantic. The response of large-scale environmental conditions to anthropogenic forcing is found to be crucial in explaining the historical and future changes in TC frequency near Western Europe.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.