Mostafa Hagar , Raymond J. Andersen , Katherine S. Ryan
{"title":"Prephenate decarboxylase:通向不寻常天然产物的一个尚未探索的分支点","authors":"Mostafa Hagar , Raymond J. Andersen , Katherine S. Ryan","doi":"10.1016/j.chembiol.2024.06.015","DOIUrl":null,"url":null,"abstract":"<div><p>Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (<strong>2</strong>) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 9","pages":"Pages 1610-1626"},"PeriodicalIF":6.6000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prephenate decarboxylase: An unexplored branchpoint to unusual natural products\",\"authors\":\"Mostafa Hagar , Raymond J. Andersen , Katherine S. Ryan\",\"doi\":\"10.1016/j.chembiol.2024.06.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (<strong>2</strong>) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.</p></div>\",\"PeriodicalId\":265,\"journal\":{\"name\":\"Cell Chemical Biology\",\"volume\":\"31 9\",\"pages\":\"Pages 1610-1626\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Chemical Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2451945624002757\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451945624002757","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Prephenate decarboxylase: An unexplored branchpoint to unusual natural products
Prephenate decarboxylases are a small family of enzymes which initiate a specialized divergence from the shikimate pathway, where prephenate (2) is decarboxylated without aromatization. In addition to effecting a challenging chemical transformation, prephenate decarboxylases have been implicated in the production of rare specialized metabolites, sometimes directly constructing bioactive warheads. Many of the biosynthetic steps to natural products derived from prephenate decarboxylases remain elusive. Here, we review prephenate decarboxylase research thus far and highlight natural products that may be derived from biosynthetic pathways involving prephenate decarboxylases. We also highlight commonly encountered challenges in the structure elucidation of these natural products. Prephenate decarboxylases are a gateway into understudied biosynthetic pathways which present a high potential for the discovery of novel and bioactive natural products, as well as new biosynthetic enzymes.
Cell Chemical BiologyBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍:
Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.