{"title":"口腔普氏链球菌通过激活ERBB2-MAPK促进结肠肿瘤发生和受体酪氨酸激酶抑制剂的抗药性","authors":"","doi":"10.1016/j.chom.2024.07.001","DOIUrl":null,"url":null,"abstract":"<p><em>Peptostreptococcus stomatis</em> (<em>P. stomatis</em>) is enriched in colorectal cancer (CRC), but its causality and translational implications in CRC are unknown. Here, we show that <em>P. stomatis</em> accelerates colonic tumorigenesis in <em>Apc</em><sup>Min/+</sup> and azoxymethane/dextran sodium sulfate (AOM-DSS) models by inducing cell proliferation, suppressing apoptosis, and impairing gut barrier function. <em>P. stomatis</em> adheres to CRC cells through its surface protein fructose-1,6-bisphosphate aldolase (FBA) that binds to the integrin α6/β4 receptor on CRC cells, leading to the activation of ERBB2 and the downstream MEK-ERK-p90 cascade. Blockade of the FBA-integrin α6/β4 abolishes ERBB2-mitogen-activated protein kinase (MAPK) activation and the protumorigenic effect of <em>P. stomatis</em>. <em>P. stomatis</em>-driven ERBB2 activation bypasses receptor tyrosine kinase (RTK) blockade by EGFR inhibitors (cetuximab, erlotinib), leading to drug resistance in xenograft and spontaneous CRC models of KRAS-wild-type CRC. <em>P. stomatis</em> also abrogates BRAF inhibitor (vemurafenib) efficacy in BRAF<sup>V600E</sup>-mutant CRC xenografts. Thus, we identify <em>P. stomatis</em> as an oncogenic bacterium and a contributory factor for non-responsiveness to RTK inhibitors in CRC.</p>","PeriodicalId":9693,"journal":{"name":"Cell host & microbe","volume":"29 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peptostreptococcus stomatis promotes colonic tumorigenesis and receptor tyrosine kinase inhibitor resistance by activating ERBB2-MAPK\",\"authors\":\"\",\"doi\":\"10.1016/j.chom.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><em>Peptostreptococcus stomatis</em> (<em>P. stomatis</em>) is enriched in colorectal cancer (CRC), but its causality and translational implications in CRC are unknown. Here, we show that <em>P. stomatis</em> accelerates colonic tumorigenesis in <em>Apc</em><sup>Min/+</sup> and azoxymethane/dextran sodium sulfate (AOM-DSS) models by inducing cell proliferation, suppressing apoptosis, and impairing gut barrier function. <em>P. stomatis</em> adheres to CRC cells through its surface protein fructose-1,6-bisphosphate aldolase (FBA) that binds to the integrin α6/β4 receptor on CRC cells, leading to the activation of ERBB2 and the downstream MEK-ERK-p90 cascade. Blockade of the FBA-integrin α6/β4 abolishes ERBB2-mitogen-activated protein kinase (MAPK) activation and the protumorigenic effect of <em>P. stomatis</em>. <em>P. stomatis</em>-driven ERBB2 activation bypasses receptor tyrosine kinase (RTK) blockade by EGFR inhibitors (cetuximab, erlotinib), leading to drug resistance in xenograft and spontaneous CRC models of KRAS-wild-type CRC. <em>P. stomatis</em> also abrogates BRAF inhibitor (vemurafenib) efficacy in BRAF<sup>V600E</sup>-mutant CRC xenografts. Thus, we identify <em>P. stomatis</em> as an oncogenic bacterium and a contributory factor for non-responsiveness to RTK inhibitors in CRC.</p>\",\"PeriodicalId\":9693,\"journal\":{\"name\":\"Cell host & microbe\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":20.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell host & microbe\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chom.2024.07.001\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell host & microbe","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.chom.2024.07.001","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Peptostreptococcus stomatis promotes colonic tumorigenesis and receptor tyrosine kinase inhibitor resistance by activating ERBB2-MAPK
Peptostreptococcus stomatis (P. stomatis) is enriched in colorectal cancer (CRC), but its causality and translational implications in CRC are unknown. Here, we show that P. stomatis accelerates colonic tumorigenesis in ApcMin/+ and azoxymethane/dextran sodium sulfate (AOM-DSS) models by inducing cell proliferation, suppressing apoptosis, and impairing gut barrier function. P. stomatis adheres to CRC cells through its surface protein fructose-1,6-bisphosphate aldolase (FBA) that binds to the integrin α6/β4 receptor on CRC cells, leading to the activation of ERBB2 and the downstream MEK-ERK-p90 cascade. Blockade of the FBA-integrin α6/β4 abolishes ERBB2-mitogen-activated protein kinase (MAPK) activation and the protumorigenic effect of P. stomatis. P. stomatis-driven ERBB2 activation bypasses receptor tyrosine kinase (RTK) blockade by EGFR inhibitors (cetuximab, erlotinib), leading to drug resistance in xenograft and spontaneous CRC models of KRAS-wild-type CRC. P. stomatis also abrogates BRAF inhibitor (vemurafenib) efficacy in BRAFV600E-mutant CRC xenografts. Thus, we identify P. stomatis as an oncogenic bacterium and a contributory factor for non-responsiveness to RTK inhibitors in CRC.
期刊介绍:
Cell Host & Microbe is a scientific journal that was launched in March 2007. The journal aims to provide a platform for scientists to exchange ideas and concepts related to the study of microbes and their interaction with host organisms at a molecular, cellular, and immune level. It publishes novel findings on a wide range of microorganisms including bacteria, fungi, parasites, and viruses. The journal focuses on the interface between the microbe and its host, whether the host is a vertebrate, invertebrate, or plant, and whether the microbe is pathogenic, non-pathogenic, or commensal. The integrated study of microbes and their interactions with each other, their host, and the cellular environment they inhabit is a unifying theme of the journal. The published work in Cell Host & Microbe is expected to be of exceptional significance within its field and also of interest to researchers in other areas. In addition to primary research articles, the journal features expert analysis, commentary, and reviews on current topics of interest in the field.