Walter A. Parada, Karl J. J. Mayrhofer, Pavlo Nikolaienko
{"title":"在 SCILL 改性铜催化剂上进行二氧化碳电还原时的实时产物检测","authors":"Walter A. Parada, Karl J. J. Mayrhofer, Pavlo Nikolaienko","doi":"10.1002/celc.202400305","DOIUrl":null,"url":null,"abstract":"<p>Modifying the chemical environment of active surfaces with ionic liquids (IL) is an emerging strategy for tailoring novel electrocatalytic systems, including carbon dioxide reduction (CO<sub>2</sub>RR). Although copper (Cu) catalysts have recently gained more attention in this field, their modification with ILs is yet to be investigated. This work tested a range of common hydrophobic ILs impregnated into carbon-supported Cu catalysts, following the “solid catalyst with ionic liquid layer” (SCILL) approach. The latter was used to showcase the applicability of real-time product detection for CO<sub>2</sub>RR employing electrochemical mass spectrometry. The observed patterns of C<sub>1</sub> to C<sub>3</sub> product selectivity offered valuable insights into the intricate reaction mechanism. In addition, increasing the size of the IL cation showed an opposite and significant effect on the reaction selectivity. The obtained qualitative results were partially compared with conventional long-term experiments.</p>","PeriodicalId":142,"journal":{"name":"ChemElectroChem","volume":"11 16","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400305","citationCount":"0","resultStr":"{\"title\":\"Real-Time Product Detection during CO2 Electroreduction on SCILL-Modified Cu Catalysts\",\"authors\":\"Walter A. Parada, Karl J. J. Mayrhofer, Pavlo Nikolaienko\",\"doi\":\"10.1002/celc.202400305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Modifying the chemical environment of active surfaces with ionic liquids (IL) is an emerging strategy for tailoring novel electrocatalytic systems, including carbon dioxide reduction (CO<sub>2</sub>RR). Although copper (Cu) catalysts have recently gained more attention in this field, their modification with ILs is yet to be investigated. This work tested a range of common hydrophobic ILs impregnated into carbon-supported Cu catalysts, following the “solid catalyst with ionic liquid layer” (SCILL) approach. The latter was used to showcase the applicability of real-time product detection for CO<sub>2</sub>RR employing electrochemical mass spectrometry. The observed patterns of C<sub>1</sub> to C<sub>3</sub> product selectivity offered valuable insights into the intricate reaction mechanism. In addition, increasing the size of the IL cation showed an opposite and significant effect on the reaction selectivity. The obtained qualitative results were partially compared with conventional long-term experiments.</p>\",\"PeriodicalId\":142,\"journal\":{\"name\":\"ChemElectroChem\",\"volume\":\"11 16\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/celc.202400305\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemElectroChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400305\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemElectroChem","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/celc.202400305","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Real-Time Product Detection during CO2 Electroreduction on SCILL-Modified Cu Catalysts
Modifying the chemical environment of active surfaces with ionic liquids (IL) is an emerging strategy for tailoring novel electrocatalytic systems, including carbon dioxide reduction (CO2RR). Although copper (Cu) catalysts have recently gained more attention in this field, their modification with ILs is yet to be investigated. This work tested a range of common hydrophobic ILs impregnated into carbon-supported Cu catalysts, following the “solid catalyst with ionic liquid layer” (SCILL) approach. The latter was used to showcase the applicability of real-time product detection for CO2RR employing electrochemical mass spectrometry. The observed patterns of C1 to C3 product selectivity offered valuable insights into the intricate reaction mechanism. In addition, increasing the size of the IL cation showed an opposite and significant effect on the reaction selectivity. The obtained qualitative results were partially compared with conventional long-term experiments.
期刊介绍:
ChemElectroChem is aimed to become a top-ranking electrochemistry journal for primary research papers and critical secondary information from authors across the world. The journal covers the entire scope of pure and applied electrochemistry, the latter encompassing (among others) energy applications, electrochemistry at interfaces (including surfaces), photoelectrochemistry and bioelectrochemistry.