含有水合离子的液体柔电性能增强

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, APPLIED
Yifan Li, Yanyu Li, Xingjian Feng, Chongpu Zhai, Shuwen Zhang and Minglong Xu
{"title":"含有水合离子的液体柔电性能增强","authors":"Yifan Li, Yanyu Li, Xingjian Feng, Chongpu Zhai, Shuwen Zhang and Minglong Xu","doi":"10.1088/1361-6463/ad632f","DOIUrl":null,"url":null,"abstract":"Flexoelectricity, denoted as an electromechanical coupling effect from strain gradient introduced polarization, is prevalent in dielectric materials. However, its application in low-viscosity liquids has been limited by the scale of the flexoelectric coefficient. This study explores the flexoelectric coefficient of various hydrated ion solutions through a series of experiments. Additionally, the interplay between ion adsorption and the flexoelectric effect is investigated by using interfacial voltage detection. By introducing hydrated structures into liquids, a significant enlargement of the flexoelectric coefficient up to 2.3 × 10−9 C m−1 is obtained in Fe2(SO4)3 solution by four times than DI water. These findings highlight the remarkable electromechanical properties of liquid materials with hydrated ions and suggest promising avenues for the application of liquid dielectrics in hydrovoltaic technology, ionotronic devices, and energy harvesters.","PeriodicalId":16789,"journal":{"name":"Journal of Physics D: Applied Physics","volume":"1 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced flexoelectricity of liquid with hydrated ions\",\"authors\":\"Yifan Li, Yanyu Li, Xingjian Feng, Chongpu Zhai, Shuwen Zhang and Minglong Xu\",\"doi\":\"10.1088/1361-6463/ad632f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flexoelectricity, denoted as an electromechanical coupling effect from strain gradient introduced polarization, is prevalent in dielectric materials. However, its application in low-viscosity liquids has been limited by the scale of the flexoelectric coefficient. This study explores the flexoelectric coefficient of various hydrated ion solutions through a series of experiments. Additionally, the interplay between ion adsorption and the flexoelectric effect is investigated by using interfacial voltage detection. By introducing hydrated structures into liquids, a significant enlargement of the flexoelectric coefficient up to 2.3 × 10−9 C m−1 is obtained in Fe2(SO4)3 solution by four times than DI water. These findings highlight the remarkable electromechanical properties of liquid materials with hydrated ions and suggest promising avenues for the application of liquid dielectrics in hydrovoltaic technology, ionotronic devices, and energy harvesters.\",\"PeriodicalId\":16789,\"journal\":{\"name\":\"Journal of Physics D: Applied Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics D: Applied Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6463/ad632f\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics D: Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6463/ad632f","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

挠电效应是由应变梯度引入极化的机电耦合效应,在介电材料中十分普遍。然而,其在低粘度液体中的应用一直受到挠电系数尺度的限制。本研究通过一系列实验探索了各种水合离子溶液的挠电系数。此外,还利用界面电压检测法研究了离子吸附与挠电效应之间的相互作用。通过在液体中引入水合结构,Fe2(SO4)3 溶液中的挠电系数显著增大至 2.3 × 10-9 C m-1,是去离子水的四倍。这些发现凸显了含有水合离子的液体材料的卓越机电特性,并为液体电介质在水伏特技术、离子电子器件和能量收集器中的应用提供了前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced flexoelectricity of liquid with hydrated ions
Flexoelectricity, denoted as an electromechanical coupling effect from strain gradient introduced polarization, is prevalent in dielectric materials. However, its application in low-viscosity liquids has been limited by the scale of the flexoelectric coefficient. This study explores the flexoelectric coefficient of various hydrated ion solutions through a series of experiments. Additionally, the interplay between ion adsorption and the flexoelectric effect is investigated by using interfacial voltage detection. By introducing hydrated structures into liquids, a significant enlargement of the flexoelectric coefficient up to 2.3 × 10−9 C m−1 is obtained in Fe2(SO4)3 solution by four times than DI water. These findings highlight the remarkable electromechanical properties of liquid materials with hydrated ions and suggest promising avenues for the application of liquid dielectrics in hydrovoltaic technology, ionotronic devices, and energy harvesters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Physics D: Applied Physics
Journal of Physics D: Applied Physics 物理-物理:应用
CiteScore
6.80
自引率
8.80%
发文量
835
审稿时长
2.1 months
期刊介绍: This journal is concerned with all aspects of applied physics research, from biophysics, magnetism, plasmas and semiconductors to the structure and properties of matter.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信