{"title":"通过倒装芯片法实现小型温度/高压集成传感器","authors":"Mimi Huang, Xiaoyu Wu, Libo Zhao, Xiangguang Han, Yong Xia, Yi Gao, Zeyu Cui, Cheng Zhang, Xiaokai Yang, Zhixia Qiao, Zhikang Li, Feng Han, Ping Yang, Zhuangde Jiang","doi":"10.1038/s41378-024-00723-3","DOIUrl":null,"url":null,"abstract":"<p>Hydraulic technology with smaller sizes and higher reliability trends, including fault prediction and intelligent control, requires high-performance temperature and pressure-integrated sensors. Current designs rely on planar wafer- or chip-level integration, which is limited by pressure range, chip size, and low reliability. We propose a small-size temperature/high-pressure integrated sensor via the flip-chip technique. The pressure and temperature units are arranged vertically, and the sensing signals of the two units are integrated into one plane through silicon vias and gold–gold bonding, reducing the lateral size and improving the efficiency of signal transmission. The flip-chip technique ensures a reliable electrical connection. A square diaphragm with rounded corners is designed and optimised with simulation to sense high pressure based on the piezoresistive effect. The temperature sensing unit with a thin-film platinum resistor measures temperature and provides back-end high-precision compensation, which will improve the precision of the pressure unit. The integrated chip is fabricated by MEMS technology and packaged to fabricate the extremely small integrated sensor. The integrated sensor is characterised, and the pressure sensor exhibits a sensitivity and sensitivity drift of 7.97 mV/MPa and −0.19% FS in the range of 0–20 MPa and −40 to 120 °C. The linearity, hysteresis, repeatability, accuracy, basic error, and zero-time drift are 0.16% FS, 0.04% FS, 0.06% FS, 0.18% FS, ±0.23% FS and 0.04% FS, respectively. The measurement error of the temperature sensor and temperature coefficient of resistance is less than ±1 °C and 3142.997 ppm/°C, respectively. The integrated sensor has broad applicability in fault diagnosis and safety monitoring of high-end equipment such as automobile detection, industrial equipment, and oil drilling platforms.</p><figure></figure>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-size temperature/high-pressure integrated sensor via flip-chip method\",\"authors\":\"Mimi Huang, Xiaoyu Wu, Libo Zhao, Xiangguang Han, Yong Xia, Yi Gao, Zeyu Cui, Cheng Zhang, Xiaokai Yang, Zhixia Qiao, Zhikang Li, Feng Han, Ping Yang, Zhuangde Jiang\",\"doi\":\"10.1038/s41378-024-00723-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydraulic technology with smaller sizes and higher reliability trends, including fault prediction and intelligent control, requires high-performance temperature and pressure-integrated sensors. Current designs rely on planar wafer- or chip-level integration, which is limited by pressure range, chip size, and low reliability. We propose a small-size temperature/high-pressure integrated sensor via the flip-chip technique. The pressure and temperature units are arranged vertically, and the sensing signals of the two units are integrated into one plane through silicon vias and gold–gold bonding, reducing the lateral size and improving the efficiency of signal transmission. The flip-chip technique ensures a reliable electrical connection. A square diaphragm with rounded corners is designed and optimised with simulation to sense high pressure based on the piezoresistive effect. The temperature sensing unit with a thin-film platinum resistor measures temperature and provides back-end high-precision compensation, which will improve the precision of the pressure unit. The integrated chip is fabricated by MEMS technology and packaged to fabricate the extremely small integrated sensor. The integrated sensor is characterised, and the pressure sensor exhibits a sensitivity and sensitivity drift of 7.97 mV/MPa and −0.19% FS in the range of 0–20 MPa and −40 to 120 °C. The linearity, hysteresis, repeatability, accuracy, basic error, and zero-time drift are 0.16% FS, 0.04% FS, 0.06% FS, 0.18% FS, ±0.23% FS and 0.04% FS, respectively. The measurement error of the temperature sensor and temperature coefficient of resistance is less than ±1 °C and 3142.997 ppm/°C, respectively. The integrated sensor has broad applicability in fault diagnosis and safety monitoring of high-end equipment such as automobile detection, industrial equipment, and oil drilling platforms.</p><figure></figure>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00723-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00723-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Small-size temperature/high-pressure integrated sensor via flip-chip method
Hydraulic technology with smaller sizes and higher reliability trends, including fault prediction and intelligent control, requires high-performance temperature and pressure-integrated sensors. Current designs rely on planar wafer- or chip-level integration, which is limited by pressure range, chip size, and low reliability. We propose a small-size temperature/high-pressure integrated sensor via the flip-chip technique. The pressure and temperature units are arranged vertically, and the sensing signals of the two units are integrated into one plane through silicon vias and gold–gold bonding, reducing the lateral size and improving the efficiency of signal transmission. The flip-chip technique ensures a reliable electrical connection. A square diaphragm with rounded corners is designed and optimised with simulation to sense high pressure based on the piezoresistive effect. The temperature sensing unit with a thin-film platinum resistor measures temperature and provides back-end high-precision compensation, which will improve the precision of the pressure unit. The integrated chip is fabricated by MEMS technology and packaged to fabricate the extremely small integrated sensor. The integrated sensor is characterised, and the pressure sensor exhibits a sensitivity and sensitivity drift of 7.97 mV/MPa and −0.19% FS in the range of 0–20 MPa and −40 to 120 °C. The linearity, hysteresis, repeatability, accuracy, basic error, and zero-time drift are 0.16% FS, 0.04% FS, 0.06% FS, 0.18% FS, ±0.23% FS and 0.04% FS, respectively. The measurement error of the temperature sensor and temperature coefficient of resistance is less than ±1 °C and 3142.997 ppm/°C, respectively. The integrated sensor has broad applicability in fault diagnosis and safety monitoring of high-end equipment such as automobile detection, industrial equipment, and oil drilling platforms.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.