Joseph F. Johnson , Michael Schwartze , Michel Belyk , Ana P. Pinheiro , Sonja A. Kotz
{"title":"白质结构的变化与幻觉倾向有关。","authors":"Joseph F. Johnson , Michael Schwartze , Michel Belyk , Ana P. Pinheiro , Sonja A. Kotz","doi":"10.1016/j.nicl.2024.103643","DOIUrl":null,"url":null,"abstract":"<div><p>Hallucinations are a prominent transdiagnostic psychiatric symptom but are also prevalent in individuals who do not require clinical care. Moreover, persistent psychosis-like experience in otherwise healthy individuals may be related to an increased risk to transition to a psychotic disorder. This suggests a common etiology across clinical and non-clinical individuals along a multidimensional psychosis continuum that may be detectable in structural variations of the brain. The current diffusion tensor imaging study assessed 50 healthy individuals (35 females) to identify possible differences in white matter associated with hallucination proneness (HP). This approach circumvents potential confounds related to medication, hospitalization, and disease progression common in clinical individuals. We determined how HP relates to white matter structure in selected association, commissural, and projection fiber pathways putatively linked to psychosis. Increased HP was associated with enhanced fractional anisotropy (FA) in the right uncinate fasciculus, the right anterior and posterior arcuate fasciculus, and the corpus callosum. These findings support the notion of a psychosis continuum, providing first evidence of structural white matter variability associated with HP in healthy individuals. Furthermore, alterations in the targeted pathways likely indicate an association between HP-related structural variations and the putative salience and attention mechanisms that these pathways subserve.</p></div>","PeriodicalId":54359,"journal":{"name":"Neuroimage-Clinical","volume":"43 ","pages":"Article 103643"},"PeriodicalIF":3.4000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2213158224000822/pdfft?md5=097302df699c86edec38fc3fa8c2cd71&pid=1-s2.0-S2213158224000822-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Variability in white matter structure relates to hallucination proneness\",\"authors\":\"Joseph F. Johnson , Michael Schwartze , Michel Belyk , Ana P. Pinheiro , Sonja A. Kotz\",\"doi\":\"10.1016/j.nicl.2024.103643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Hallucinations are a prominent transdiagnostic psychiatric symptom but are also prevalent in individuals who do not require clinical care. Moreover, persistent psychosis-like experience in otherwise healthy individuals may be related to an increased risk to transition to a psychotic disorder. This suggests a common etiology across clinical and non-clinical individuals along a multidimensional psychosis continuum that may be detectable in structural variations of the brain. The current diffusion tensor imaging study assessed 50 healthy individuals (35 females) to identify possible differences in white matter associated with hallucination proneness (HP). This approach circumvents potential confounds related to medication, hospitalization, and disease progression common in clinical individuals. We determined how HP relates to white matter structure in selected association, commissural, and projection fiber pathways putatively linked to psychosis. Increased HP was associated with enhanced fractional anisotropy (FA) in the right uncinate fasciculus, the right anterior and posterior arcuate fasciculus, and the corpus callosum. These findings support the notion of a psychosis continuum, providing first evidence of structural white matter variability associated with HP in healthy individuals. Furthermore, alterations in the targeted pathways likely indicate an association between HP-related structural variations and the putative salience and attention mechanisms that these pathways subserve.</p></div>\",\"PeriodicalId\":54359,\"journal\":{\"name\":\"Neuroimage-Clinical\",\"volume\":\"43 \",\"pages\":\"Article 103643\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000822/pdfft?md5=097302df699c86edec38fc3fa8c2cd71&pid=1-s2.0-S2213158224000822-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroimage-Clinical\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213158224000822\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroimage-Clinical","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213158224000822","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Variability in white matter structure relates to hallucination proneness
Hallucinations are a prominent transdiagnostic psychiatric symptom but are also prevalent in individuals who do not require clinical care. Moreover, persistent psychosis-like experience in otherwise healthy individuals may be related to an increased risk to transition to a psychotic disorder. This suggests a common etiology across clinical and non-clinical individuals along a multidimensional psychosis continuum that may be detectable in structural variations of the brain. The current diffusion tensor imaging study assessed 50 healthy individuals (35 females) to identify possible differences in white matter associated with hallucination proneness (HP). This approach circumvents potential confounds related to medication, hospitalization, and disease progression common in clinical individuals. We determined how HP relates to white matter structure in selected association, commissural, and projection fiber pathways putatively linked to psychosis. Increased HP was associated with enhanced fractional anisotropy (FA) in the right uncinate fasciculus, the right anterior and posterior arcuate fasciculus, and the corpus callosum. These findings support the notion of a psychosis continuum, providing first evidence of structural white matter variability associated with HP in healthy individuals. Furthermore, alterations in the targeted pathways likely indicate an association between HP-related structural variations and the putative salience and attention mechanisms that these pathways subserve.
期刊介绍:
NeuroImage: Clinical, a journal of diseases, disorders and syndromes involving the Nervous System, provides a vehicle for communicating important advances in the study of abnormal structure-function relationships of the human nervous system based on imaging.
The focus of NeuroImage: Clinical is on defining changes to the brain associated with primary neurologic and psychiatric diseases and disorders of the nervous system as well as behavioral syndromes and developmental conditions. The main criterion for judging papers is the extent of scientific advancement in the understanding of the pathophysiologic mechanisms of diseases and disorders, in identification of functional models that link clinical signs and symptoms with brain function and in the creation of image based tools applicable to a broad range of clinical needs including diagnosis, monitoring and tracking of illness, predicting therapeutic response and development of new treatments. Papers dealing with structure and function in animal models will also be considered if they reveal mechanisms that can be readily translated to human conditions.