{"title":"电磁场可通过降低三阴性乳腺癌中 E-cadherin/N-cadherin的转换来抑制肿瘤的侵袭。","authors":"Maryam Moori, Dariush Norouzian, Parichehr Yaghmaei, Leila Farahmand","doi":"10.1080/15368378.2024.2381575","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer has been recognized as the most common cancer affecting women. Extremely low-frequency electromagnetic field (ELF-EMF) exposure can influence cellular activities such as cell-cell junctions and metastasis. However, more research is required to determine these fields' underlying mechanisms of action. Since cadherin switching is an important process during EMT (epithelial-mesenchymal transition), in this study, cadherin switching was regarded as one of the probable mechanisms of the effect of ELF-EMFs on metastasis suppression. For five days, breast cells received a 1 Hz, 100mT ELF-EMF (2 h/day). Cell invasion and migration were assessed in vitro by the Scratch wound healing assay and Transwell culture chambers. The expression of E- and N-cadherin was assessed using real-time PCR, western blotting, and Immunocytochemistry. ELF-EMF dramatically reduced the migration and invasion of MDA-MB 231 malignant cells compared to sham exposure, according to the results of the scratch test and the Transwell invasion test. The mRNA and protein expression levels of E-cadherin showed an increase, while the N-cadherin expression was found with a decrease, in MDA-MB231 cells receiving 1 Hz EMF compared to sham exposure. E-cadherin's mRNA and protein expression levels were enhanced in MCF10A cells receiving 1 Hz EMF compared to sham exposure. ELF-EMF can be used as a method for the multifaceted treatments of invasive breast cancer.</p>","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":" ","pages":"236-245"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic field as a possible inhibitor of tumor invasion by declining E-cadherin/N-cadherin switching in triple negative breast cancer.\",\"authors\":\"Maryam Moori, Dariush Norouzian, Parichehr Yaghmaei, Leila Farahmand\",\"doi\":\"10.1080/15368378.2024.2381575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer has been recognized as the most common cancer affecting women. Extremely low-frequency electromagnetic field (ELF-EMF) exposure can influence cellular activities such as cell-cell junctions and metastasis. However, more research is required to determine these fields' underlying mechanisms of action. Since cadherin switching is an important process during EMT (epithelial-mesenchymal transition), in this study, cadherin switching was regarded as one of the probable mechanisms of the effect of ELF-EMFs on metastasis suppression. For five days, breast cells received a 1 Hz, 100mT ELF-EMF (2 h/day). Cell invasion and migration were assessed in vitro by the Scratch wound healing assay and Transwell culture chambers. The expression of E- and N-cadherin was assessed using real-time PCR, western blotting, and Immunocytochemistry. ELF-EMF dramatically reduced the migration and invasion of MDA-MB 231 malignant cells compared to sham exposure, according to the results of the scratch test and the Transwell invasion test. The mRNA and protein expression levels of E-cadherin showed an increase, while the N-cadherin expression was found with a decrease, in MDA-MB231 cells receiving 1 Hz EMF compared to sham exposure. E-cadherin's mRNA and protein expression levels were enhanced in MCF10A cells receiving 1 Hz EMF compared to sham exposure. ELF-EMF can be used as a method for the multifaceted treatments of invasive breast cancer.</p>\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":\" \",\"pages\":\"236-245\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2024.2381575\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2024.2381575","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Electromagnetic field as a possible inhibitor of tumor invasion by declining E-cadherin/N-cadherin switching in triple negative breast cancer.
Breast cancer has been recognized as the most common cancer affecting women. Extremely low-frequency electromagnetic field (ELF-EMF) exposure can influence cellular activities such as cell-cell junctions and metastasis. However, more research is required to determine these fields' underlying mechanisms of action. Since cadherin switching is an important process during EMT (epithelial-mesenchymal transition), in this study, cadherin switching was regarded as one of the probable mechanisms of the effect of ELF-EMFs on metastasis suppression. For five days, breast cells received a 1 Hz, 100mT ELF-EMF (2 h/day). Cell invasion and migration were assessed in vitro by the Scratch wound healing assay and Transwell culture chambers. The expression of E- and N-cadherin was assessed using real-time PCR, western blotting, and Immunocytochemistry. ELF-EMF dramatically reduced the migration and invasion of MDA-MB 231 malignant cells compared to sham exposure, according to the results of the scratch test and the Transwell invasion test. The mRNA and protein expression levels of E-cadherin showed an increase, while the N-cadherin expression was found with a decrease, in MDA-MB231 cells receiving 1 Hz EMF compared to sham exposure. E-cadherin's mRNA and protein expression levels were enhanced in MCF10A cells receiving 1 Hz EMF compared to sham exposure. ELF-EMF can be used as a method for the multifaceted treatments of invasive breast cancer.
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.