{"title":"甲状旁腺腺瘤和携带杂合子基因CDC73突变的癌的基因组比较分析","authors":"Yulong Li, William F Simonds, Haobin Chen","doi":"10.1210/clinem/dgae506","DOIUrl":null,"url":null,"abstract":"<p><strong>Context: </strong>Parathyroid cancer has been linked to germline mutations of the Cell Division Cycle 73 (CDC73) gene. However, carriers harboring cancer-associated germline CDC73 mutations may develop only parathyroid adenoma or no parathyroid disease. This incomplete penetrance indicates that additional genomic events are required for parathyroid tumorigenesis.</p><p><strong>Objective: </strong>(1) Determine the status of the second CDC73 allele in parathyroid tumors harboring germline CDC73 mutations and (2) compare the genomic landscapes between parathyroid carcinomas and adenomas.</p><p><strong>Design: </strong>Whole-exome and RNA sequencing of 12 parathyroid tumors harboring germline CDC73 mutations (6 adenomas and 6 carcinomas) and their matched normal tissues.</p><p><strong>Results: </strong>All 12 parathyroid tumors had gained 1 somatic event predicted to cause a complete inactivation of the second CDC73 allele. Several distinctive genomic features were identified in parathyroid carcinomas compared to adenomas, including more single nucleotide variants bearing the C > G transversion and APOBEC deamination signatures, frequent mutations of the genes involved in the PI-3K/mTOR signaling, a greater number of copy number variations, and substantially more genes with altered expression. Parathyroid carcinomas also share some genomic features with adenomas. For instance, both have recurrent somatic mutations and copy number loss that impact the genes involved in T-cell receptor signaling and tumor antigen presentation, suggesting a shared strategy to evade immune surveillance.</p><p><strong>Conclusion: </strong>Biallelic inactivation of CDC73 is essential for parathyroid tumorigenesis in carriers harboring germline mutations of this gene. Despite sharing some genomic features with adenomas, parathyroid carcinomas have more distinctive alterations in the genome, some of which may be critical for cancer formation.</p>","PeriodicalId":50238,"journal":{"name":"Journal of Clinical Endocrinology & Metabolism","volume":" ","pages":"429-440"},"PeriodicalIF":5.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747674/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Comparative Genomic Analysis of Parathyroid Adenomas and Carcinomas Harboring Heterozygous Germline CDC73 Mutations.\",\"authors\":\"Yulong Li, William F Simonds, Haobin Chen\",\"doi\":\"10.1210/clinem/dgae506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Context: </strong>Parathyroid cancer has been linked to germline mutations of the Cell Division Cycle 73 (CDC73) gene. However, carriers harboring cancer-associated germline CDC73 mutations may develop only parathyroid adenoma or no parathyroid disease. This incomplete penetrance indicates that additional genomic events are required for parathyroid tumorigenesis.</p><p><strong>Objective: </strong>(1) Determine the status of the second CDC73 allele in parathyroid tumors harboring germline CDC73 mutations and (2) compare the genomic landscapes between parathyroid carcinomas and adenomas.</p><p><strong>Design: </strong>Whole-exome and RNA sequencing of 12 parathyroid tumors harboring germline CDC73 mutations (6 adenomas and 6 carcinomas) and their matched normal tissues.</p><p><strong>Results: </strong>All 12 parathyroid tumors had gained 1 somatic event predicted to cause a complete inactivation of the second CDC73 allele. Several distinctive genomic features were identified in parathyroid carcinomas compared to adenomas, including more single nucleotide variants bearing the C > G transversion and APOBEC deamination signatures, frequent mutations of the genes involved in the PI-3K/mTOR signaling, a greater number of copy number variations, and substantially more genes with altered expression. Parathyroid carcinomas also share some genomic features with adenomas. For instance, both have recurrent somatic mutations and copy number loss that impact the genes involved in T-cell receptor signaling and tumor antigen presentation, suggesting a shared strategy to evade immune surveillance.</p><p><strong>Conclusion: </strong>Biallelic inactivation of CDC73 is essential for parathyroid tumorigenesis in carriers harboring germline mutations of this gene. Despite sharing some genomic features with adenomas, parathyroid carcinomas have more distinctive alterations in the genome, some of which may be critical for cancer formation.</p>\",\"PeriodicalId\":50238,\"journal\":{\"name\":\"Journal of Clinical Endocrinology & Metabolism\",\"volume\":\" \",\"pages\":\"429-440\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Endocrinology & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1210/clinem/dgae506\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Endocrinology & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/clinem/dgae506","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
A Comparative Genomic Analysis of Parathyroid Adenomas and Carcinomas Harboring Heterozygous Germline CDC73 Mutations.
Context: Parathyroid cancer has been linked to germline mutations of the Cell Division Cycle 73 (CDC73) gene. However, carriers harboring cancer-associated germline CDC73 mutations may develop only parathyroid adenoma or no parathyroid disease. This incomplete penetrance indicates that additional genomic events are required for parathyroid tumorigenesis.
Objective: (1) Determine the status of the second CDC73 allele in parathyroid tumors harboring germline CDC73 mutations and (2) compare the genomic landscapes between parathyroid carcinomas and adenomas.
Design: Whole-exome and RNA sequencing of 12 parathyroid tumors harboring germline CDC73 mutations (6 adenomas and 6 carcinomas) and their matched normal tissues.
Results: All 12 parathyroid tumors had gained 1 somatic event predicted to cause a complete inactivation of the second CDC73 allele. Several distinctive genomic features were identified in parathyroid carcinomas compared to adenomas, including more single nucleotide variants bearing the C > G transversion and APOBEC deamination signatures, frequent mutations of the genes involved in the PI-3K/mTOR signaling, a greater number of copy number variations, and substantially more genes with altered expression. Parathyroid carcinomas also share some genomic features with adenomas. For instance, both have recurrent somatic mutations and copy number loss that impact the genes involved in T-cell receptor signaling and tumor antigen presentation, suggesting a shared strategy to evade immune surveillance.
Conclusion: Biallelic inactivation of CDC73 is essential for parathyroid tumorigenesis in carriers harboring germline mutations of this gene. Despite sharing some genomic features with adenomas, parathyroid carcinomas have more distinctive alterations in the genome, some of which may be critical for cancer formation.
期刊介绍:
The Journal of Clinical Endocrinology & Metabolism is the world"s leading peer-reviewed journal for endocrine clinical research and cutting edge clinical practice reviews. Each issue provides the latest in-depth coverage of new developments enhancing our understanding, diagnosis and treatment of endocrine and metabolic disorders. Regular features of special interest to endocrine consultants include clinical trials, clinical reviews, clinical practice guidelines, case seminars, and controversies in clinical endocrinology, as well as original reports of the most important advances in patient-oriented endocrine and metabolic research. According to the latest Thomson Reuters Journal Citation Report, JCE&M articles were cited 64,185 times in 2008.