Banu Hümeyra Keskin, İdris Şahin, Gözde Kahraman, Pelin Kamuran Duran, Görkem Dülger, Mehmet Akif Durmuş, Ayşe Nur Ceylan, Emel Çalışkan, Şükrü Öksüz
{"title":"[从临床样本中分离出的棒状杆菌的生物膜形成、抗法定人数感应活性和抗菌药耐药性研究]。","authors":"Banu Hümeyra Keskin, İdris Şahin, Gözde Kahraman, Pelin Kamuran Duran, Görkem Dülger, Mehmet Akif Durmuş, Ayşe Nur Ceylan, Emel Çalışkan, Şükrü Öksüz","doi":"10.5578/mb.20249704","DOIUrl":null,"url":null,"abstract":"<p><p>An increasing number of different clinical infections caused by Corynebacteria have been reported in the last decade. The aim of this study was to evaluate the antibiotic resistance rates, biofilm formation capacities and to investigate the ''anti-quorum-sensing (anti-QS)'' activities of corynebacteria, which were divided into three groups according to the type of growth in culture (pure, with another pathogenic bacterium and polymicrobial growth). In total 240 Corynebacterium spp. isolates from different clinical specimens sent to the medical microbiology laboratories of Düzce University Faculty of Medicine Hospital and Başakşehir Çam and Sakura City Hospital between June 2021 and June 2022 were classified into three groups: pure, isolated with another pathogen and polymicrobial, according to their growth patterns in culture. Bacteria were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) Biotyper (Bruker, Germany) at an external centre. Antibiotic susceptibilities were determined by disc diffusion method and for vancomycin broth microdilution method was used. Results were interpreted according to EUCAST recommendations. The biofilm-forming properties of the isolates were determined quantitatively. Bioactive components of 17 isolates with strong biofilm formation were extracted and anti-QS activity was determined by agar diffusion method using Chromobacterium violaceum ATCC 12472 strain and then violacein pigment production was measured quantitatively. Of the 240 Corynebacterium spp. isolates, 138 (58%) were pure, 52 (22%) were isolated with another pathogen and 50 (20%) were part of a polymicrobial infection. Of the isolates, 140 were identified as C.striatum, 34 as C.amycolatum and 24 as Corynebacterium afermentans. When the antibiotic resistance rates of the Corynebacterium isolates were analysed according to the groups, the resistance rates to rifampicin and tetracycline antibiotics were found to be statistically significantly lower in the polymicrobial group than in the other groups. The resistance rates to penicillin, clindamycin, ciprofloxacin, moxifloxacin, rifampicin, tetracycline and linezolid were 96.7%, 88.3%, 86.3%, 73.8%, 62.5%, 59.2% and 0.8%, respectively. While all isolates were susceptible to vancomycin, linezolid resistance was detected in two C.afermentans isolates. When the biofilm formation ability was analysed, it was observed that 87 (36.3%) isolates formed biofilm. The biofilm formation rate of the isolates in the polymicrobial growth group was lower than the other two groups. The anti-QS activity of 17 isolates with strong biofilm formation was investigated and none of the Corynebacterium extracts tested were found to have anti-QS activity (inhibition of violacein pigment production without inhibiting bacterial growth) in the QS study with C.violaceum, whereas five isolate extracts had antibacterial activity (inhibition of bacterial growth). Four of the bacterial extracts with antimicrobial activity belonged to C.amycolatum and one to C.afermentans. In conclusion, when both antibiotic resistance rates and biofilm formation rates were analysed, the corynebacteria growing in culture with another pathogen showed similar characteristics to the corynebacteria growing as a pure culture. Therefore, it was thought that corynebacteria growing with another pathogen should not be ignored. In addition, the antimicrobial effects of some corynebacterial extracts suggested that more QS studies should be carried out with microbiota bacteria.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Investigation of Biofilm Formation, Anti-Quorum Sensing Activity and Antimicrobial Resistance in Corynebacterium Species Isolated from Clinical Samples].\",\"authors\":\"Banu Hümeyra Keskin, İdris Şahin, Gözde Kahraman, Pelin Kamuran Duran, Görkem Dülger, Mehmet Akif Durmuş, Ayşe Nur Ceylan, Emel Çalışkan, Şükrü Öksüz\",\"doi\":\"10.5578/mb.20249704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An increasing number of different clinical infections caused by Corynebacteria have been reported in the last decade. The aim of this study was to evaluate the antibiotic resistance rates, biofilm formation capacities and to investigate the ''anti-quorum-sensing (anti-QS)'' activities of corynebacteria, which were divided into three groups according to the type of growth in culture (pure, with another pathogenic bacterium and polymicrobial growth). In total 240 Corynebacterium spp. isolates from different clinical specimens sent to the medical microbiology laboratories of Düzce University Faculty of Medicine Hospital and Başakşehir Çam and Sakura City Hospital between June 2021 and June 2022 were classified into three groups: pure, isolated with another pathogen and polymicrobial, according to their growth patterns in culture. Bacteria were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) Biotyper (Bruker, Germany) at an external centre. Antibiotic susceptibilities were determined by disc diffusion method and for vancomycin broth microdilution method was used. Results were interpreted according to EUCAST recommendations. The biofilm-forming properties of the isolates were determined quantitatively. Bioactive components of 17 isolates with strong biofilm formation were extracted and anti-QS activity was determined by agar diffusion method using Chromobacterium violaceum ATCC 12472 strain and then violacein pigment production was measured quantitatively. Of the 240 Corynebacterium spp. isolates, 138 (58%) were pure, 52 (22%) were isolated with another pathogen and 50 (20%) were part of a polymicrobial infection. Of the isolates, 140 were identified as C.striatum, 34 as C.amycolatum and 24 as Corynebacterium afermentans. When the antibiotic resistance rates of the Corynebacterium isolates were analysed according to the groups, the resistance rates to rifampicin and tetracycline antibiotics were found to be statistically significantly lower in the polymicrobial group than in the other groups. The resistance rates to penicillin, clindamycin, ciprofloxacin, moxifloxacin, rifampicin, tetracycline and linezolid were 96.7%, 88.3%, 86.3%, 73.8%, 62.5%, 59.2% and 0.8%, respectively. While all isolates were susceptible to vancomycin, linezolid resistance was detected in two C.afermentans isolates. When the biofilm formation ability was analysed, it was observed that 87 (36.3%) isolates formed biofilm. The biofilm formation rate of the isolates in the polymicrobial growth group was lower than the other two groups. The anti-QS activity of 17 isolates with strong biofilm formation was investigated and none of the Corynebacterium extracts tested were found to have anti-QS activity (inhibition of violacein pigment production without inhibiting bacterial growth) in the QS study with C.violaceum, whereas five isolate extracts had antibacterial activity (inhibition of bacterial growth). Four of the bacterial extracts with antimicrobial activity belonged to C.amycolatum and one to C.afermentans. In conclusion, when both antibiotic resistance rates and biofilm formation rates were analysed, the corynebacteria growing in culture with another pathogen showed similar characteristics to the corynebacteria growing as a pure culture. Therefore, it was thought that corynebacteria growing with another pathogen should not be ignored. In addition, the antimicrobial effects of some corynebacterial extracts suggested that more QS studies should be carried out with microbiota bacteria.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.5578/mb.20249704\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5578/mb.20249704","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
[Investigation of Biofilm Formation, Anti-Quorum Sensing Activity and Antimicrobial Resistance in Corynebacterium Species Isolated from Clinical Samples].
An increasing number of different clinical infections caused by Corynebacteria have been reported in the last decade. The aim of this study was to evaluate the antibiotic resistance rates, biofilm formation capacities and to investigate the ''anti-quorum-sensing (anti-QS)'' activities of corynebacteria, which were divided into three groups according to the type of growth in culture (pure, with another pathogenic bacterium and polymicrobial growth). In total 240 Corynebacterium spp. isolates from different clinical specimens sent to the medical microbiology laboratories of Düzce University Faculty of Medicine Hospital and Başakşehir Çam and Sakura City Hospital between June 2021 and June 2022 were classified into three groups: pure, isolated with another pathogen and polymicrobial, according to their growth patterns in culture. Bacteria were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) Biotyper (Bruker, Germany) at an external centre. Antibiotic susceptibilities were determined by disc diffusion method and for vancomycin broth microdilution method was used. Results were interpreted according to EUCAST recommendations. The biofilm-forming properties of the isolates were determined quantitatively. Bioactive components of 17 isolates with strong biofilm formation were extracted and anti-QS activity was determined by agar diffusion method using Chromobacterium violaceum ATCC 12472 strain and then violacein pigment production was measured quantitatively. Of the 240 Corynebacterium spp. isolates, 138 (58%) were pure, 52 (22%) were isolated with another pathogen and 50 (20%) were part of a polymicrobial infection. Of the isolates, 140 were identified as C.striatum, 34 as C.amycolatum and 24 as Corynebacterium afermentans. When the antibiotic resistance rates of the Corynebacterium isolates were analysed according to the groups, the resistance rates to rifampicin and tetracycline antibiotics were found to be statistically significantly lower in the polymicrobial group than in the other groups. The resistance rates to penicillin, clindamycin, ciprofloxacin, moxifloxacin, rifampicin, tetracycline and linezolid were 96.7%, 88.3%, 86.3%, 73.8%, 62.5%, 59.2% and 0.8%, respectively. While all isolates were susceptible to vancomycin, linezolid resistance was detected in two C.afermentans isolates. When the biofilm formation ability was analysed, it was observed that 87 (36.3%) isolates formed biofilm. The biofilm formation rate of the isolates in the polymicrobial growth group was lower than the other two groups. The anti-QS activity of 17 isolates with strong biofilm formation was investigated and none of the Corynebacterium extracts tested were found to have anti-QS activity (inhibition of violacein pigment production without inhibiting bacterial growth) in the QS study with C.violaceum, whereas five isolate extracts had antibacterial activity (inhibition of bacterial growth). Four of the bacterial extracts with antimicrobial activity belonged to C.amycolatum and one to C.afermentans. In conclusion, when both antibiotic resistance rates and biofilm formation rates were analysed, the corynebacteria growing in culture with another pathogen showed similar characteristics to the corynebacteria growing as a pure culture. Therefore, it was thought that corynebacteria growing with another pathogen should not be ignored. In addition, the antimicrobial effects of some corynebacterial extracts suggested that more QS studies should be carried out with microbiota bacteria.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.