{"title":"受感染风险意识驱动的宿主行为扩大了超级传播事件的机会。","authors":"Kris V Parag, Robin N Thompson","doi":"10.1098/rsif.2024.0325","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate that heterogeneity in the perceived risks associated with infection within host populations amplifies chances of superspreading during the crucial early stages of epidemics. Under this behavioural model, individuals less concerned about dangers from infection are more likely to be infected and attend larger sized (riskier) events, where we assume event sizes remain unchanged. For directly transmitted diseases such as COVID-19, this leads to infections being introduced at rates above the population prevalence to those events most conducive to superspreading. We develop an interpretable, computational framework for evaluating within-event risks and derive a small-scale reproduction number measuring how the infections generated at an event depend on transmission heterogeneities and numbers of introductions. This generalizes previous frameworks and quantifies how event-scale patterns and population-level characteristics relate. As event duration and size grow, our reproduction number converges to the basic reproduction number. We illustrate that even moderate levels of heterogeneity in the perceived risks of infection substantially increase the likelihood of disproportionately large clusters of infections occurring at larger events, despite fixed overall disease prevalence. We show why collecting data linking host behaviour and event attendance is essential for accurately assessing the risks posed by invading pathogens in emerging stages of outbreaks.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240325"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268441/pdf/","citationCount":"0","resultStr":"{\"title\":\"Host behaviour driven by awareness of infection risk amplifies the chance of superspreading events.\",\"authors\":\"Kris V Parag, Robin N Thompson\",\"doi\":\"10.1098/rsif.2024.0325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate that heterogeneity in the perceived risks associated with infection within host populations amplifies chances of superspreading during the crucial early stages of epidemics. Under this behavioural model, individuals less concerned about dangers from infection are more likely to be infected and attend larger sized (riskier) events, where we assume event sizes remain unchanged. For directly transmitted diseases such as COVID-19, this leads to infections being introduced at rates above the population prevalence to those events most conducive to superspreading. We develop an interpretable, computational framework for evaluating within-event risks and derive a small-scale reproduction number measuring how the infections generated at an event depend on transmission heterogeneities and numbers of introductions. This generalizes previous frameworks and quantifies how event-scale patterns and population-level characteristics relate. As event duration and size grow, our reproduction number converges to the basic reproduction number. We illustrate that even moderate levels of heterogeneity in the perceived risks of infection substantially increase the likelihood of disproportionately large clusters of infections occurring at larger events, despite fixed overall disease prevalence. We show why collecting data linking host behaviour and event attendance is essential for accurately assessing the risks posed by invading pathogens in emerging stages of outbreaks.</p>\",\"PeriodicalId\":17488,\"journal\":{\"name\":\"Journal of The Royal Society Interface\",\"volume\":\"21 216\",\"pages\":\"20240325\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11268441/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Royal Society Interface\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rsif.2024.0325\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0325","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Host behaviour driven by awareness of infection risk amplifies the chance of superspreading events.
We demonstrate that heterogeneity in the perceived risks associated with infection within host populations amplifies chances of superspreading during the crucial early stages of epidemics. Under this behavioural model, individuals less concerned about dangers from infection are more likely to be infected and attend larger sized (riskier) events, where we assume event sizes remain unchanged. For directly transmitted diseases such as COVID-19, this leads to infections being introduced at rates above the population prevalence to those events most conducive to superspreading. We develop an interpretable, computational framework for evaluating within-event risks and derive a small-scale reproduction number measuring how the infections generated at an event depend on transmission heterogeneities and numbers of introductions. This generalizes previous frameworks and quantifies how event-scale patterns and population-level characteristics relate. As event duration and size grow, our reproduction number converges to the basic reproduction number. We illustrate that even moderate levels of heterogeneity in the perceived risks of infection substantially increase the likelihood of disproportionately large clusters of infections occurring at larger events, despite fixed overall disease prevalence. We show why collecting data linking host behaviour and event attendance is essential for accurately assessing the risks posed by invading pathogens in emerging stages of outbreaks.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.