人类脐带间充质基质细胞衍生的外泌体对伤口愈合的治疗潜力:利用外泌体作为无细胞疗法。

IF 1.1 Q4 CELL & TISSUE ENGINEERING
Journal of Stem Cells & Regenerative Medicine Pub Date : 2024-05-31 eCollection Date: 2024-01-01 DOI:10.46582/jsrm.2003003
Leila Dehghani, Iman Owliaee, Fatemeh Sadeghian, Ali Shojaeian
{"title":"人类脐带间充质基质细胞衍生的外泌体对伤口愈合的治疗潜力:利用外泌体作为无细胞疗法。","authors":"Leila Dehghani, Iman Owliaee, Fatemeh Sadeghian, Ali Shojaeian","doi":"10.46582/jsrm.2003003","DOIUrl":null,"url":null,"abstract":"<p><p>Wound healing is a complicated process that involves many different types of cells and signaling pathways. Mesenchymal stromal cells (MSCs) have shown great potential as a treatment to improve wound healing because they can modulate inflammation, promote the growth of new blood vessels, and stimulate the regeneration of tissue. Recent evidence indicates MSCs-derived extracellular vesicles known as exosomes may mediate many of the therapeutic effects of MSCs on wound healing. Exosomes contain bioactive molecules such as proteins, lipids, and RNAs that can be transferred to recipient cells to modulate cellular responses. This article reviews current evidence on the mechanisms and therapeutic effects of human umbilical cord MSCs (hUCMSCs)-derived exosomes on wound healing. In vitro and animal studies demonstrate that hUCMSC-derived exosomes promote fibroblast proliferation/migration, angiogenesis, and re-epithelialization while reducing inflammation and scar formation. These effects are mediated by exosomal transfer of cytokines, growth factors, and regulatory microRNAs that modulate signaling pathways involved in wound healing. Challenges remain in exosome isolation methods, optimizing targeting/retention, and translation to human studies. Nevertheless, hUCMSCs-derived exosomes show promise as a novel cell-free therapeutic approach to accelerate wound closure and improve healing outcomes. Further research is warranted to fully characterize hUCMSCs-exosomal mechanisms and explore their clinical potential for wound management.</p>","PeriodicalId":17155,"journal":{"name":"Journal of Stem Cells & Regenerative Medicine","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262847/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Therapeutic Potential of Human Umbilical Cord Mesenchymal Stromal Cells Derived Exosomes for Wound Healing: Harnessing Exosomes as a Cell-free Therapy.\",\"authors\":\"Leila Dehghani, Iman Owliaee, Fatemeh Sadeghian, Ali Shojaeian\",\"doi\":\"10.46582/jsrm.2003003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wound healing is a complicated process that involves many different types of cells and signaling pathways. Mesenchymal stromal cells (MSCs) have shown great potential as a treatment to improve wound healing because they can modulate inflammation, promote the growth of new blood vessels, and stimulate the regeneration of tissue. Recent evidence indicates MSCs-derived extracellular vesicles known as exosomes may mediate many of the therapeutic effects of MSCs on wound healing. Exosomes contain bioactive molecules such as proteins, lipids, and RNAs that can be transferred to recipient cells to modulate cellular responses. This article reviews current evidence on the mechanisms and therapeutic effects of human umbilical cord MSCs (hUCMSCs)-derived exosomes on wound healing. In vitro and animal studies demonstrate that hUCMSC-derived exosomes promote fibroblast proliferation/migration, angiogenesis, and re-epithelialization while reducing inflammation and scar formation. These effects are mediated by exosomal transfer of cytokines, growth factors, and regulatory microRNAs that modulate signaling pathways involved in wound healing. Challenges remain in exosome isolation methods, optimizing targeting/retention, and translation to human studies. Nevertheless, hUCMSCs-derived exosomes show promise as a novel cell-free therapeutic approach to accelerate wound closure and improve healing outcomes. Further research is warranted to fully characterize hUCMSCs-exosomal mechanisms and explore their clinical potential for wound management.</p>\",\"PeriodicalId\":17155,\"journal\":{\"name\":\"Journal of Stem Cells & Regenerative Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11262847/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Stem Cells & Regenerative Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46582/jsrm.2003003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Stem Cells & Regenerative Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46582/jsrm.2003003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

伤口愈合是一个复杂的过程,涉及许多不同类型的细胞和信号通路。间充质基质细胞(MSCs)可以调节炎症、促进新血管生长并刺激组织再生,因此在改善伤口愈合方面显示出巨大的治疗潜力。最近的证据表明,间叶干细胞衍生的细胞外囊泡--外泌体--可能会介导间叶干细胞对伤口愈合的许多治疗效果。外泌体含有蛋白质、脂质和 RNA 等生物活性分子,可转移到受体细胞以调节细胞反应。本文回顾了目前有关人脐带间充质干细胞(hUCMSCs)衍生的外泌体对伤口愈合的机制和治疗效果的证据。体外和动物研究表明,hUCMSC 衍生的外泌体可促进成纤维细胞增殖/迁移、血管生成和再上皮化,同时减少炎症和疤痕形成。这些作用是通过外泌体转移细胞因子、生长因子和调控微 RNA 来介导的,而细胞因子、生长因子和调控微 RNA 可调节参与伤口愈合的信号通路。在外泌体分离方法、优化靶向/保留以及转化为人体研究方面仍存在挑战。不过,源自 hUCMSCs 的外泌体有望成为一种新型的无细胞治疗方法,加速伤口闭合并改善愈合效果。我们有必要进一步研究 hUCMSCs 外泌体机制的全面特征,并探索其在伤口管理方面的临床潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Therapeutic Potential of Human Umbilical Cord Mesenchymal Stromal Cells Derived Exosomes for Wound Healing: Harnessing Exosomes as a Cell-free Therapy.

Wound healing is a complicated process that involves many different types of cells and signaling pathways. Mesenchymal stromal cells (MSCs) have shown great potential as a treatment to improve wound healing because they can modulate inflammation, promote the growth of new blood vessels, and stimulate the regeneration of tissue. Recent evidence indicates MSCs-derived extracellular vesicles known as exosomes may mediate many of the therapeutic effects of MSCs on wound healing. Exosomes contain bioactive molecules such as proteins, lipids, and RNAs that can be transferred to recipient cells to modulate cellular responses. This article reviews current evidence on the mechanisms and therapeutic effects of human umbilical cord MSCs (hUCMSCs)-derived exosomes on wound healing. In vitro and animal studies demonstrate that hUCMSC-derived exosomes promote fibroblast proliferation/migration, angiogenesis, and re-epithelialization while reducing inflammation and scar formation. These effects are mediated by exosomal transfer of cytokines, growth factors, and regulatory microRNAs that modulate signaling pathways involved in wound healing. Challenges remain in exosome isolation methods, optimizing targeting/retention, and translation to human studies. Nevertheless, hUCMSCs-derived exosomes show promise as a novel cell-free therapeutic approach to accelerate wound closure and improve healing outcomes. Further research is warranted to fully characterize hUCMSCs-exosomal mechanisms and explore their clinical potential for wound management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
5
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信