利用人工智能生成合成光适应视网膜电图波形,改进对代表性不足人群视网膜状况的分类。

IF 1.8 4区 医学 Q3 OPHTHALMOLOGY
Journal of Ophthalmology Pub Date : 2024-07-16 eCollection Date: 2024-01-01 DOI:10.1155/2024/1990419
Mikhail Kulyabin, Aleksei Zhdanov, Andreas Maier, Lynne Loh, Jose J Estevez, Paul A Constable
{"title":"利用人工智能生成合成光适应视网膜电图波形,改进对代表性不足人群视网膜状况的分类。","authors":"Mikhail Kulyabin, Aleksei Zhdanov, Andreas Maier, Lynne Loh, Jose J Estevez, Paul A Constable","doi":"10.1155/2024/1990419","DOIUrl":null,"url":null,"abstract":"<p><p>Visual electrophysiology is often used clinically to determine the functional changes associated with retinal or neurological conditions. The full-field flash electroretinogram (ERG) assesses the global contribution of the outer and inner retinal layers initiated by the rods and cone pathways depending on the state of retinal adaptation. Within clinical centers, reference normative data are used to compare clinical cases that may be rare or underpowered within a specific demographic. To bolster either the reference dataset or the case dataset, the application of synthetic ERG waveforms may offer benefits to disease classification and case-control studies. In this study and as a proof of concept, artificial intelligence (AI) to generate synthetic signals using generative adversarial networks is deployed to upscale male participants within an ISCEV reference dataset containing 68 participants, with waveforms from the right and left eye. Random forest classifiers further improved classification for sex within the group from a balanced accuracy of 0.72-0.83 with the added synthetic male waveforms. This is the first study to demonstrate the generation of synthetic ERG waveforms to improve machine learning classification modelling with electroretinogram waveforms.</p>","PeriodicalId":16674,"journal":{"name":"Journal of Ophthalmology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generating Synthetic Light-Adapted Electroretinogram Waveforms Using Artificial Intelligence to Improve Classification of Retinal Conditions in Under-Represented Populations.\",\"authors\":\"Mikhail Kulyabin, Aleksei Zhdanov, Andreas Maier, Lynne Loh, Jose J Estevez, Paul A Constable\",\"doi\":\"10.1155/2024/1990419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visual electrophysiology is often used clinically to determine the functional changes associated with retinal or neurological conditions. The full-field flash electroretinogram (ERG) assesses the global contribution of the outer and inner retinal layers initiated by the rods and cone pathways depending on the state of retinal adaptation. Within clinical centers, reference normative data are used to compare clinical cases that may be rare or underpowered within a specific demographic. To bolster either the reference dataset or the case dataset, the application of synthetic ERG waveforms may offer benefits to disease classification and case-control studies. In this study and as a proof of concept, artificial intelligence (AI) to generate synthetic signals using generative adversarial networks is deployed to upscale male participants within an ISCEV reference dataset containing 68 participants, with waveforms from the right and left eye. Random forest classifiers further improved classification for sex within the group from a balanced accuracy of 0.72-0.83 with the added synthetic male waveforms. This is the first study to demonstrate the generation of synthetic ERG waveforms to improve machine learning classification modelling with electroretinogram waveforms.</p>\",\"PeriodicalId\":16674,\"journal\":{\"name\":\"Journal of Ophthalmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1990419\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/1990419","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

视觉电生理学通常用于临床,以确定与视网膜或神经系统疾病相关的功能变化。全视野闪光视网膜电图(ERG)可评估视杆细胞和视锥通路启动的视网膜外层和内层的整体贡献,具体取决于视网膜的适应状态。在临床中心,参考标准数据被用于比较临床病例,而在特定人群中,这些病例可能比较罕见或能力不足。为了加强参考数据集或病例数据集,合成 ERG 波形的应用可为疾病分类和病例对照研究带来益处。在本研究中,作为概念验证,使用人工智能(AI)生成对抗网络生成合成信号,在包含 68 名参与者的 ISCEV 参考数据集中对男性参与者进行升级,波形来自右眼和左眼。随机森林分类器在增加了合成男性波形后,进一步提高了组内性别分类的准确度,平衡准确度为 0.72-0.83。这是第一项利用视网膜电图波形生成合成视网膜电图波形以改进机器学习分类建模的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Synthetic Light-Adapted Electroretinogram Waveforms Using Artificial Intelligence to Improve Classification of Retinal Conditions in Under-Represented Populations.

Visual electrophysiology is often used clinically to determine the functional changes associated with retinal or neurological conditions. The full-field flash electroretinogram (ERG) assesses the global contribution of the outer and inner retinal layers initiated by the rods and cone pathways depending on the state of retinal adaptation. Within clinical centers, reference normative data are used to compare clinical cases that may be rare or underpowered within a specific demographic. To bolster either the reference dataset or the case dataset, the application of synthetic ERG waveforms may offer benefits to disease classification and case-control studies. In this study and as a proof of concept, artificial intelligence (AI) to generate synthetic signals using generative adversarial networks is deployed to upscale male participants within an ISCEV reference dataset containing 68 participants, with waveforms from the right and left eye. Random forest classifiers further improved classification for sex within the group from a balanced accuracy of 0.72-0.83 with the added synthetic male waveforms. This is the first study to demonstrate the generation of synthetic ERG waveforms to improve machine learning classification modelling with electroretinogram waveforms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ophthalmology
Journal of Ophthalmology MEDICINE, RESEARCH & EXPERIMENTAL-OPHTHALMOLOGY
CiteScore
4.30
自引率
5.30%
发文量
194
审稿时长
6-12 weeks
期刊介绍: Journal of Ophthalmology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies related to the anatomy, physiology and diseases of the eye. Submissions should focus on new diagnostic and surgical techniques, instrument and therapy updates, as well as clinical trials and research findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信