Mikhail Kulyabin, Aleksei Zhdanov, Andreas Maier, Lynne Loh, Jose J Estevez, Paul A Constable
{"title":"利用人工智能生成合成光适应视网膜电图波形,改进对代表性不足人群视网膜状况的分类。","authors":"Mikhail Kulyabin, Aleksei Zhdanov, Andreas Maier, Lynne Loh, Jose J Estevez, Paul A Constable","doi":"10.1155/2024/1990419","DOIUrl":null,"url":null,"abstract":"<p><p>Visual electrophysiology is often used clinically to determine the functional changes associated with retinal or neurological conditions. The full-field flash electroretinogram (ERG) assesses the global contribution of the outer and inner retinal layers initiated by the rods and cone pathways depending on the state of retinal adaptation. Within clinical centers, reference normative data are used to compare clinical cases that may be rare or underpowered within a specific demographic. To bolster either the reference dataset or the case dataset, the application of synthetic ERG waveforms may offer benefits to disease classification and case-control studies. In this study and as a proof of concept, artificial intelligence (AI) to generate synthetic signals using generative adversarial networks is deployed to upscale male participants within an ISCEV reference dataset containing 68 participants, with waveforms from the right and left eye. Random forest classifiers further improved classification for sex within the group from a balanced accuracy of 0.72-0.83 with the added synthetic male waveforms. This is the first study to demonstrate the generation of synthetic ERG waveforms to improve machine learning classification modelling with electroretinogram waveforms.</p>","PeriodicalId":16674,"journal":{"name":"Journal of Ophthalmology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265936/pdf/","citationCount":"0","resultStr":"{\"title\":\"Generating Synthetic Light-Adapted Electroretinogram Waveforms Using Artificial Intelligence to Improve Classification of Retinal Conditions in Under-Represented Populations.\",\"authors\":\"Mikhail Kulyabin, Aleksei Zhdanov, Andreas Maier, Lynne Loh, Jose J Estevez, Paul A Constable\",\"doi\":\"10.1155/2024/1990419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Visual electrophysiology is often used clinically to determine the functional changes associated with retinal or neurological conditions. The full-field flash electroretinogram (ERG) assesses the global contribution of the outer and inner retinal layers initiated by the rods and cone pathways depending on the state of retinal adaptation. Within clinical centers, reference normative data are used to compare clinical cases that may be rare or underpowered within a specific demographic. To bolster either the reference dataset or the case dataset, the application of synthetic ERG waveforms may offer benefits to disease classification and case-control studies. In this study and as a proof of concept, artificial intelligence (AI) to generate synthetic signals using generative adversarial networks is deployed to upscale male participants within an ISCEV reference dataset containing 68 participants, with waveforms from the right and left eye. Random forest classifiers further improved classification for sex within the group from a balanced accuracy of 0.72-0.83 with the added synthetic male waveforms. This is the first study to demonstrate the generation of synthetic ERG waveforms to improve machine learning classification modelling with electroretinogram waveforms.</p>\",\"PeriodicalId\":16674,\"journal\":{\"name\":\"Journal of Ophthalmology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11265936/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1990419\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2024/1990419","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
Generating Synthetic Light-Adapted Electroretinogram Waveforms Using Artificial Intelligence to Improve Classification of Retinal Conditions in Under-Represented Populations.
Visual electrophysiology is often used clinically to determine the functional changes associated with retinal or neurological conditions. The full-field flash electroretinogram (ERG) assesses the global contribution of the outer and inner retinal layers initiated by the rods and cone pathways depending on the state of retinal adaptation. Within clinical centers, reference normative data are used to compare clinical cases that may be rare or underpowered within a specific demographic. To bolster either the reference dataset or the case dataset, the application of synthetic ERG waveforms may offer benefits to disease classification and case-control studies. In this study and as a proof of concept, artificial intelligence (AI) to generate synthetic signals using generative adversarial networks is deployed to upscale male participants within an ISCEV reference dataset containing 68 participants, with waveforms from the right and left eye. Random forest classifiers further improved classification for sex within the group from a balanced accuracy of 0.72-0.83 with the added synthetic male waveforms. This is the first study to demonstrate the generation of synthetic ERG waveforms to improve machine learning classification modelling with electroretinogram waveforms.
期刊介绍:
Journal of Ophthalmology is a peer-reviewed, Open Access journal that publishes original research articles, review articles, and clinical studies related to the anatomy, physiology and diseases of the eye. Submissions should focus on new diagnostic and surgical techniques, instrument and therapy updates, as well as clinical trials and research findings.