{"title":"水凝胶在生物医学领域应用的前沿和热点话题:基于 CiteSpace 的文献计量分析。","authors":"Weiming Sun, Wendi Wu, Xiangli Dong, Guohua Yu","doi":"10.1186/s13036-024-00435-2","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogels are formed of crosslinked polymer chains arranged in three-dimensional (3D) networks. These chains have good water-containing capacity and are soft and malleable. Hydrogels have good biocompatibility due to their significant water content, flexible structure, and numerous holes. These characteristics make them analogous to biological tissues. Despite the publication of 8700 literature related to hydrogel biomedical applications in the past 52 years (1973 ~ 2024), studies on the use of hydrogels in biomedicine are few. To gain a comprehensive understanding of their current development status, research trends, and prospects in the biomedical application field, it is imperative to conduct a thorough retrospective analysis. In this study, we employ bibliometric analysis and CiteSpace software to quantitatively and visually analyze articles published in this field. Firstly, we provide a quantitative analysis of authorship and institutional publications over the past 52 years to elucidate the fundamental development status regarding hydrogel biomedical applications. Secondly, we did visual studies on terms that are high-frequency, explosive, keyword clustering, and so on, to understand the directionality and evolution of the main research hotspots during each period. Notably, our findings emphasize that fabricating hydrogels into wound healing-promoting dressings emerges as a prominent hotspot within the application field. We anticipate that this paper will inspire researchers with novel ideas for advancing hydrogel applications in biomedicine.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"40"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267772/pdf/","citationCount":"0","resultStr":"{\"title\":\"Frontier and hot topics in the application of hydrogel in the biomedical field: a bibliometric analysis based on CiteSpace.\",\"authors\":\"Weiming Sun, Wendi Wu, Xiangli Dong, Guohua Yu\",\"doi\":\"10.1186/s13036-024-00435-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrogels are formed of crosslinked polymer chains arranged in three-dimensional (3D) networks. These chains have good water-containing capacity and are soft and malleable. Hydrogels have good biocompatibility due to their significant water content, flexible structure, and numerous holes. These characteristics make them analogous to biological tissues. Despite the publication of 8700 literature related to hydrogel biomedical applications in the past 52 years (1973 ~ 2024), studies on the use of hydrogels in biomedicine are few. To gain a comprehensive understanding of their current development status, research trends, and prospects in the biomedical application field, it is imperative to conduct a thorough retrospective analysis. In this study, we employ bibliometric analysis and CiteSpace software to quantitatively and visually analyze articles published in this field. Firstly, we provide a quantitative analysis of authorship and institutional publications over the past 52 years to elucidate the fundamental development status regarding hydrogel biomedical applications. Secondly, we did visual studies on terms that are high-frequency, explosive, keyword clustering, and so on, to understand the directionality and evolution of the main research hotspots during each period. Notably, our findings emphasize that fabricating hydrogels into wound healing-promoting dressings emerges as a prominent hotspot within the application field. We anticipate that this paper will inspire researchers with novel ideas for advancing hydrogel applications in biomedicine.</p>\",\"PeriodicalId\":15053,\"journal\":{\"name\":\"Journal of Biological Engineering\",\"volume\":\"18 1\",\"pages\":\"40\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267772/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Engineering\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13036-024-00435-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00435-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Frontier and hot topics in the application of hydrogel in the biomedical field: a bibliometric analysis based on CiteSpace.
Hydrogels are formed of crosslinked polymer chains arranged in three-dimensional (3D) networks. These chains have good water-containing capacity and are soft and malleable. Hydrogels have good biocompatibility due to their significant water content, flexible structure, and numerous holes. These characteristics make them analogous to biological tissues. Despite the publication of 8700 literature related to hydrogel biomedical applications in the past 52 years (1973 ~ 2024), studies on the use of hydrogels in biomedicine are few. To gain a comprehensive understanding of their current development status, research trends, and prospects in the biomedical application field, it is imperative to conduct a thorough retrospective analysis. In this study, we employ bibliometric analysis and CiteSpace software to quantitatively and visually analyze articles published in this field. Firstly, we provide a quantitative analysis of authorship and institutional publications over the past 52 years to elucidate the fundamental development status regarding hydrogel biomedical applications. Secondly, we did visual studies on terms that are high-frequency, explosive, keyword clustering, and so on, to understand the directionality and evolution of the main research hotspots during each period. Notably, our findings emphasize that fabricating hydrogels into wound healing-promoting dressings emerges as a prominent hotspot within the application field. We anticipate that this paper will inspire researchers with novel ideas for advancing hydrogel applications in biomedicine.
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.