Genny Grasselli, Adriana Arigò, Pierangela Palma, Giorgio Famiglini, Achille Cappiello
{"title":"基于液体电子电离 (LEI) 的直接和非直接 LC-MS 方法的最新发展。","authors":"Genny Grasselli, Adriana Arigò, Pierangela Palma, Giorgio Famiglini, Achille Cappiello","doi":"10.1080/10408347.2024.2381543","DOIUrl":null,"url":null,"abstract":"<p><p>Mass spectrometry (MS) enables precise identification and quantification of molecules, particularly when combined with chromatography. The advent of atmospheric pressure ionization (API) techniques allowed the efficient coupling of liquid chromatography with MS (LC-MS), extending analyses to nonvolatile and thermolabile compounds. API techniques present limitations such as low informative capacity and reproducibility of mass spectra, increasing instrument complexity and costs. Other challenges include analyzing poorly polar molecules and matrix effects (ME), which negatively impact quantitative analyses, necessitating extensive sample purification or using expensive labeled standards. These limitations prompted the exploration of alternative solutions, leading to the development of the Liquid Electron Ionization (LEI) interface. The system has demonstrated excellent robustness and reproducibility. LEI has been employed to analyze various compounds, including pesticides, drugs of abuse, phenols, polycyclic aromatic hydrocarbons (PAHs), phthalates, and many others. Its versatility has been validated with single quadrupole, triple quadrupole, and QToF detectors, operating in electron ionization (EI) or chemical ionization (CI) modes and with both reverse phase liquid chromatography (RPLC) and normal phase liquid chromatography (NPLC). LEI has also been successfully integrated with the Microfluidic Open Interface (MOI), Membrane Introduction Mass Spectrometry (MIMS), and Microfluidic Water-Assisted Trap Focusing (M-WATF), broadening its application scope and consistently demonstrating promising results in terms of sensitivity and identification power. The most recent advancement is the development of Extractive-Liquid Sampling Electron Ionization-Mass Spectrometry (E-LEI-MS), a surface sampling and real-time analysis technique based on the LEI concept. This review article offers a comprehensive and up-to-date picture of the potential of LEI.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Latest Developments in Direct and Non-Direct LC-MS Methods Based on Liquid Electron Ionization (LEI).\",\"authors\":\"Genny Grasselli, Adriana Arigò, Pierangela Palma, Giorgio Famiglini, Achille Cappiello\",\"doi\":\"10.1080/10408347.2024.2381543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mass spectrometry (MS) enables precise identification and quantification of molecules, particularly when combined with chromatography. The advent of atmospheric pressure ionization (API) techniques allowed the efficient coupling of liquid chromatography with MS (LC-MS), extending analyses to nonvolatile and thermolabile compounds. API techniques present limitations such as low informative capacity and reproducibility of mass spectra, increasing instrument complexity and costs. Other challenges include analyzing poorly polar molecules and matrix effects (ME), which negatively impact quantitative analyses, necessitating extensive sample purification or using expensive labeled standards. These limitations prompted the exploration of alternative solutions, leading to the development of the Liquid Electron Ionization (LEI) interface. The system has demonstrated excellent robustness and reproducibility. LEI has been employed to analyze various compounds, including pesticides, drugs of abuse, phenols, polycyclic aromatic hydrocarbons (PAHs), phthalates, and many others. Its versatility has been validated with single quadrupole, triple quadrupole, and QToF detectors, operating in electron ionization (EI) or chemical ionization (CI) modes and with both reverse phase liquid chromatography (RPLC) and normal phase liquid chromatography (NPLC). LEI has also been successfully integrated with the Microfluidic Open Interface (MOI), Membrane Introduction Mass Spectrometry (MIMS), and Microfluidic Water-Assisted Trap Focusing (M-WATF), broadening its application scope and consistently demonstrating promising results in terms of sensitivity and identification power. The most recent advancement is the development of Extractive-Liquid Sampling Electron Ionization-Mass Spectrometry (E-LEI-MS), a surface sampling and real-time analysis technique based on the LEI concept. This review article offers a comprehensive and up-to-date picture of the potential of LEI.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2024.2381543\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2024.2381543","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Latest Developments in Direct and Non-Direct LC-MS Methods Based on Liquid Electron Ionization (LEI).
Mass spectrometry (MS) enables precise identification and quantification of molecules, particularly when combined with chromatography. The advent of atmospheric pressure ionization (API) techniques allowed the efficient coupling of liquid chromatography with MS (LC-MS), extending analyses to nonvolatile and thermolabile compounds. API techniques present limitations such as low informative capacity and reproducibility of mass spectra, increasing instrument complexity and costs. Other challenges include analyzing poorly polar molecules and matrix effects (ME), which negatively impact quantitative analyses, necessitating extensive sample purification or using expensive labeled standards. These limitations prompted the exploration of alternative solutions, leading to the development of the Liquid Electron Ionization (LEI) interface. The system has demonstrated excellent robustness and reproducibility. LEI has been employed to analyze various compounds, including pesticides, drugs of abuse, phenols, polycyclic aromatic hydrocarbons (PAHs), phthalates, and many others. Its versatility has been validated with single quadrupole, triple quadrupole, and QToF detectors, operating in electron ionization (EI) or chemical ionization (CI) modes and with both reverse phase liquid chromatography (RPLC) and normal phase liquid chromatography (NPLC). LEI has also been successfully integrated with the Microfluidic Open Interface (MOI), Membrane Introduction Mass Spectrometry (MIMS), and Microfluidic Water-Assisted Trap Focusing (M-WATF), broadening its application scope and consistently demonstrating promising results in terms of sensitivity and identification power. The most recent advancement is the development of Extractive-Liquid Sampling Electron Ionization-Mass Spectrometry (E-LEI-MS), a surface sampling and real-time analysis technique based on the LEI concept. This review article offers a comprehensive and up-to-date picture of the potential of LEI.
期刊介绍:
Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area.
This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following:
· chemical analysis;
· instrumentation;
· chemometrics;
· analytical biochemistry;
· medicinal analysis;
· forensics;
· environmental sciences;
· applied physics;
· and material science.