亨廷顿病中与年龄和疾病相关的自噬损伤:直接神经元重编程的新发现

IF 7.8 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Aging Cell Pub Date : 2024-07-23 DOI:10.1111/acel.14285
Chuyang Luo, Junsheng Yang
{"title":"亨廷顿病中与年龄和疾病相关的自噬损伤:直接神经元重编程的新发现","authors":"Chuyang Luo,&nbsp;Junsheng Yang","doi":"10.1111/acel.14285","DOIUrl":null,"url":null,"abstract":"<p>Autophagy impairment in Huntington disease (HD) has been reported for almost two decades. However, the molecular mechanisms underlying this phenomenon are still unclear. This is partially because it is challenging to model the impact of the disease-causing mutation, aging, as well as the selective vulnerability of neurons in a single model. Recently developed direct neuronal reprogramming that allows researchers to induce neurons-of-interest retaining biological aging information made it possible to establish HD cellular models to study more relevant age- and disease-related molecular changes in neurons. We here summarized the findings from a few latest studies utilizing directly reprogrammed HD neurons and discussed the new insights they brought to the understanding of the age- and disease-related autophagy impairment in HD.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14285","citationCount":"0","resultStr":"{\"title\":\"Age- and disease-related autophagy impairment in Huntington disease: New insights from direct neuronal reprogramming\",\"authors\":\"Chuyang Luo,&nbsp;Junsheng Yang\",\"doi\":\"10.1111/acel.14285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Autophagy impairment in Huntington disease (HD) has been reported for almost two decades. However, the molecular mechanisms underlying this phenomenon are still unclear. This is partially because it is challenging to model the impact of the disease-causing mutation, aging, as well as the selective vulnerability of neurons in a single model. Recently developed direct neuronal reprogramming that allows researchers to induce neurons-of-interest retaining biological aging information made it possible to establish HD cellular models to study more relevant age- and disease-related molecular changes in neurons. We here summarized the findings from a few latest studies utilizing directly reprogrammed HD neurons and discussed the new insights they brought to the understanding of the age- and disease-related autophagy impairment in HD.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14285\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.14285\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14285","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

亨廷顿病(HD)自噬功能受损的报道已有近二十年的历史。然而,这一现象的分子机制仍不清楚。部分原因是在单一模型中模拟致病突变、衰老以及神经元选择性脆弱性的影响具有挑战性。最近开发的直接神经元重编程技术允许研究人员诱导感兴趣的神经元保留生物衰老信息,这使得建立高清细胞模型以研究神经元中更多与年龄和疾病相关的分子变化成为可能。我们在此总结了一些利用直接重编程 HD 神经元的最新研究结果,并讨论了这些研究为理解 HD 中与年龄和疾病相关的自噬损伤带来的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Age- and disease-related autophagy impairment in Huntington disease: New insights from direct neuronal reprogramming

Age- and disease-related autophagy impairment in Huntington disease: New insights from direct neuronal reprogramming

Age- and disease-related autophagy impairment in Huntington disease: New insights from direct neuronal reprogramming

Autophagy impairment in Huntington disease (HD) has been reported for almost two decades. However, the molecular mechanisms underlying this phenomenon are still unclear. This is partially because it is challenging to model the impact of the disease-causing mutation, aging, as well as the selective vulnerability of neurons in a single model. Recently developed direct neuronal reprogramming that allows researchers to induce neurons-of-interest retaining biological aging information made it possible to establish HD cellular models to study more relevant age- and disease-related molecular changes in neurons. We here summarized the findings from a few latest studies utilizing directly reprogrammed HD neurons and discussed the new insights they brought to the understanding of the age- and disease-related autophagy impairment in HD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aging Cell
Aging Cell 生物-老年医学
CiteScore
14.40
自引率
2.60%
发文量
212
审稿时长
8 weeks
期刊介绍: Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信