循环寿命长、过电势低的室温全固态钠镁电池

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2024-07-23 DOI:10.1002/cssc.202401184
Xiaoyi Zhan, Fenwei Cui, Yunhong Luo, Hui Zhang, Yunxiao Yang, Qin Zhou, Yifan Huang, Yimin Li, Zhi Liu
{"title":"循环寿命长、过电势低的室温全固态钠镁电池","authors":"Xiaoyi Zhan,&nbsp;Fenwei Cui,&nbsp;Yunhong Luo,&nbsp;Hui Zhang,&nbsp;Yunxiao Yang,&nbsp;Qin Zhou,&nbsp;Yifan Huang,&nbsp;Yimin Li,&nbsp;Zhi Liu","doi":"10.1002/cssc.202401184","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn−Ag batteries have been developed and commercialized for nearly a century, offering stable discharge and high specific energies. Sodium, with its lower redox potential, smaller charge-to-mass ratio, and abundant resources, presents a promising alternative to zinc. In this study, we successfully developed an all-solid-state Na−Ag battery system. This battery demonstrates stable discharge and charge voltages, low overpotential (0.27 V), high energy efficiency (&gt;91 %), and long cycle life under moderate humidity at room temperature. The reaction mechanism was elucidated through combined analyses using differential electrochemical mass spectrometry (DEMS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Our findings indicate that metallic Ag in the cathode materials acts as an effective catalyst for the oxygen reduction reaction during the initial discharge process, forming NaOH as the discharge product. Ag is then oxidized during the charging process and recovered during discharge, serving as an active reactant in the Na−Ag battery. This work demonstrates superior performance of all-solid-state Na−Ag battery over aqueous Zn−Ag battery. Na−Ag battery may be of interest in applications with stringent requirements on stable discharge voltage and high specific energy.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":"18 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Room-Temperature All-Solid-State Na−Ag Battery with a Long Cycle Life and Low Overpotential\",\"authors\":\"Xiaoyi Zhan,&nbsp;Fenwei Cui,&nbsp;Yunhong Luo,&nbsp;Hui Zhang,&nbsp;Yunxiao Yang,&nbsp;Qin Zhou,&nbsp;Yifan Huang,&nbsp;Yimin Li,&nbsp;Zhi Liu\",\"doi\":\"10.1002/cssc.202401184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aqueous Zn−Ag batteries have been developed and commercialized for nearly a century, offering stable discharge and high specific energies. Sodium, with its lower redox potential, smaller charge-to-mass ratio, and abundant resources, presents a promising alternative to zinc. In this study, we successfully developed an all-solid-state Na−Ag battery system. This battery demonstrates stable discharge and charge voltages, low overpotential (0.27 V), high energy efficiency (&gt;91 %), and long cycle life under moderate humidity at room temperature. The reaction mechanism was elucidated through combined analyses using differential electrochemical mass spectrometry (DEMS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Our findings indicate that metallic Ag in the cathode materials acts as an effective catalyst for the oxygen reduction reaction during the initial discharge process, forming NaOH as the discharge product. Ag is then oxidized during the charging process and recovered during discharge, serving as an active reactant in the Na−Ag battery. This work demonstrates superior performance of all-solid-state Na−Ag battery over aqueous Zn−Ag battery. Na−Ag battery may be of interest in applications with stringent requirements on stable discharge voltage and high specific energy.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202401184\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cssc.202401184","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

锌银水溶液电池的开发和商业化已有近一个世纪的历史,具有放电稳定、比能量高等特点。钠具有较低的氧化还原电位、较小的电荷质量比和丰富的资源,是锌的一种有前途的替代品。在这项研究中,我们成功开发了一种全固态钠银电池系统。该电池放电和充电电压稳定,过电位低(0.27 V),能量效率高(大于 91%),在室温中等湿度条件下循环寿命长。通过使用差分电化学质谱 (DEMS)、X 射线衍射 (XRD)、拉曼光谱和 X 射线光电子能谱 (XPS) 进行综合分析,阐明了反应机理。我们的研究结果表明,在初始放电过程中,阴极材料中的金属银可作为氧还原反应的有效催化剂,形成放电产物 NaOH。然后,银在充电过程中被氧化,并在放电过程中被回收,成为 Na-Ag 电池中的活性反应物。这项研究表明,全固态钠银电池的性能优于水态锌银电池。在对稳定放电电压和高比能量有严格要求的应用中,Na-Ag 电池可能会受到关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Room-Temperature All-Solid-State Na−Ag Battery with a Long Cycle Life and Low Overpotential

A Room-Temperature All-Solid-State Na−Ag Battery with a Long Cycle Life and Low Overpotential

A Room-Temperature All-Solid-State Na−Ag Battery with a Long Cycle Life and Low Overpotential

A Room-Temperature All-Solid-State Na−Ag Battery with a Long Cycle Life and Low Overpotential

A Room-Temperature All-Solid-State Na−Ag Battery with a Long Cycle Life and Low Overpotential

Aqueous Zn−Ag batteries have been developed and commercialized for nearly a century, offering stable discharge and high specific energies. Sodium, with its lower redox potential, smaller charge-to-mass ratio, and abundant resources, presents a promising alternative to zinc. In this study, we successfully developed an all-solid-state Na−Ag battery system. This battery demonstrates stable discharge and charge voltages, low overpotential (0.27 V), high energy efficiency (>91 %), and long cycle life under moderate humidity at room temperature. The reaction mechanism was elucidated through combined analyses using differential electrochemical mass spectrometry (DEMS), X-ray diffraction (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). Our findings indicate that metallic Ag in the cathode materials acts as an effective catalyst for the oxygen reduction reaction during the initial discharge process, forming NaOH as the discharge product. Ag is then oxidized during the charging process and recovered during discharge, serving as an active reactant in the Na−Ag battery. This work demonstrates superior performance of all-solid-state Na−Ag battery over aqueous Zn−Ag battery. Na−Ag battery may be of interest in applications with stringent requirements on stable discharge voltage and high specific energy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信