光盘压印纳米图案上的三维细胞自组装

IF 6.1 2区 工程技术 Q1 BIOCHEMICAL RESEARCH METHODS
Lab on a Chip Pub Date : 2024-07-23 DOI:10.1039/D4LC00386A
Jeeyeon Lee and Chwee Teck Lim
{"title":"光盘压印纳米图案上的三维细胞自组装","authors":"Jeeyeon Lee and Chwee Teck Lim","doi":"10.1039/D4LC00386A","DOIUrl":null,"url":null,"abstract":"<p >Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.</p>","PeriodicalId":85,"journal":{"name":"Lab on a Chip","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D cellular self-assembly on optical disc-imprinted nanopatterns†\",\"authors\":\"Jeeyeon Lee and Chwee Teck Lim\",\"doi\":\"10.1039/D4LC00386A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.</p>\",\"PeriodicalId\":85,\"journal\":{\"name\":\"Lab on a Chip\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lab on a Chip\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00386a\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lab on a Chip","FirstCategoryId":"5","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/lc/d4lc00386a","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

三维(3D)细胞组合体,如癌症球形体或有机体,因其生理相关性和在各种生物应用中的多功能性而逐渐得到认可。模仿细胞外基质的纳米图案提供了指导细胞行为的重要拓扑线索,有可能促进三维细胞自组装。然而,高昂的设备成本、制造费用以及复杂耗时的自然过程阻碍了纳米图案在生物应用中的广泛应用。在这项研究中,我们证明了由光盘生成的纳米图案能有效促进细胞自组装。我们提出了一种利用弹性体复制成型法从各种类型的光盘中生成纳米图案的简单而经济的方法。我们制备出了各种纳米图案,包括不同间距和高度的纳米槽/脊、纳米柱和纳米凹坑,凸显了光盘作为复制成型主模板的实用性。我们探索了在光盘上重复复制成型的可行性,以提高纳米图案制造的成本效益。我们的研究表明,基于纳米图案基底制造的纳米图案井(NW-chip)能有效诱导三种癌细胞(NCI-H1650 肺癌细胞、Mia-PaCa-2 胰腺癌细胞、MCF-7 乳腺癌细胞)的三维细胞自组装,它们具有不同的形态和大小。这突出表明,光盘生成的纳米图案可以提供有效的拓扑引导,从而调节细胞行为。此外,我们还证明了纳米图案压印 PDMS 材料和非粘附性表面处理增强的疏水性可进一步促进三维细胞自组装。总之,我们的研究强调了利用简单的 PDMS 成型技术从容易获得且成本低廉的光盘中生成的各种类型的纳米图案,它们不仅可以作为细胞自组装的宝贵工具,还可以用于各种生物应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D cellular self-assembly on optical disc-imprinted nanopatterns†

3D cellular self-assembly on optical disc-imprinted nanopatterns†

Three-dimensional (3D) cellular assemblies, such as cancer spheroids and organoids, are increasingly valued for their physiological relevance, and versatility in biological applications. Nanopatterns that mimic the extracellular matrix provide crucial topological cues, creating a physiologically relevant cellular environment and guiding cellular behaviors. However, the high cost and complex, time-consuming nature of the nanofabrication process have limited the widespread adoption of nanopatterns in diverse biological applications. In this study, we present a straightforward and cost-effective elastomer replica molding method utilizing commercially available optical discs to generate various nanopatterns, such as nanogroove/ridge, nanoposts, and nanopits, varying in spacing and heights. Using the nanopatterned well chips (NW-Chips), we demonstrated the efficient formation of 3D multicellular self-assemblies of three different types of cancer cells. Our findings highlight the accessibility and affordability of optical discs as tools for nanopattern generation, offering promising avenues for modulating cell behaviors and advancing diverse biological applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Lab on a Chip
Lab on a Chip 工程技术-化学综合
CiteScore
11.10
自引率
8.20%
发文量
434
审稿时长
2.6 months
期刊介绍: Lab on a Chip is the premiere journal that publishes cutting-edge research in the field of miniaturization. By their very nature, microfluidic/nanofluidic/miniaturized systems are at the intersection of disciplines, spanning fundamental research to high-end application, which is reflected by the broad readership of the journal. Lab on a Chip publishes two types of papers on original research: full-length research papers and communications. Papers should demonstrate innovations, which can come from technical advancements or applications addressing pressing needs in globally important areas. The journal also publishes Comments, Reviews, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信