Qiaoyan Yang, Jonathan S Abebe, Michelle Mai, Gabriella Rudy, Sang Y Kim, Orrin Devinsky, Chengzu Long
{"title":"T4 DNA 聚合酶可防止对目标 DNA 造成有害损伤,并提高 CRISPR 编辑的精确度。","authors":"Qiaoyan Yang, Jonathan S Abebe, Michelle Mai, Gabriella Rudy, Sang Y Kim, Orrin Devinsky, Chengzu Long","doi":"10.1038/s44318-024-00158-6","DOIUrl":null,"url":null,"abstract":"<p><p>Unintended on-target chromosomal alterations induced by CRISPR/Cas9 in mammalian cells are common, particularly large deletions and chromosomal translocations, and present a safety challenge for genome editing. Thus, there is still an unmet need to develop safer and more efficient editing tools. We screened diverse DNA polymerases of distinct origins and identified a T4 DNA polymerase derived from phage T4 that strongly prevents undesired on-target damage while increasing the proportion of precise 1- to 2-base-pair insertions generated during CRISPR/Cas9 editing (termed CasPlus). CasPlus induced substantially fewer on-target large deletions while increasing the efficiency of correcting common frameshift mutations in DMD and restored higher level of dystrophin expression than Cas9-alone in human cardiomyocytes. Moreover, CasPlus greatly reduced the frequency of on-target large deletions during mouse germline editing. In multiplexed guide RNAs mediating gene editing, CasPlus repressed chromosomal translocations while maintaining gene disruption efficiency that was higher or comparable to Cas9 in primary human T cells. Therefore, CasPlus offers a safer and more efficient gene editing strategy to treat pathogenic variants or to introduce genetic modifications in human applications.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377749/pdf/","citationCount":"0","resultStr":"{\"title\":\"T4 DNA polymerase prevents deleterious on-target DNA damage and enhances precise CRISPR editing.\",\"authors\":\"Qiaoyan Yang, Jonathan S Abebe, Michelle Mai, Gabriella Rudy, Sang Y Kim, Orrin Devinsky, Chengzu Long\",\"doi\":\"10.1038/s44318-024-00158-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unintended on-target chromosomal alterations induced by CRISPR/Cas9 in mammalian cells are common, particularly large deletions and chromosomal translocations, and present a safety challenge for genome editing. Thus, there is still an unmet need to develop safer and more efficient editing tools. We screened diverse DNA polymerases of distinct origins and identified a T4 DNA polymerase derived from phage T4 that strongly prevents undesired on-target damage while increasing the proportion of precise 1- to 2-base-pair insertions generated during CRISPR/Cas9 editing (termed CasPlus). CasPlus induced substantially fewer on-target large deletions while increasing the efficiency of correcting common frameshift mutations in DMD and restored higher level of dystrophin expression than Cas9-alone in human cardiomyocytes. Moreover, CasPlus greatly reduced the frequency of on-target large deletions during mouse germline editing. In multiplexed guide RNAs mediating gene editing, CasPlus repressed chromosomal translocations while maintaining gene disruption efficiency that was higher or comparable to Cas9 in primary human T cells. Therefore, CasPlus offers a safer and more efficient gene editing strategy to treat pathogenic variants or to introduce genetic modifications in human applications.</p>\",\"PeriodicalId\":50533,\"journal\":{\"name\":\"EMBO Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMBO Journal\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s44318-024-00158-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00158-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
T4 DNA polymerase prevents deleterious on-target DNA damage and enhances precise CRISPR editing.
Unintended on-target chromosomal alterations induced by CRISPR/Cas9 in mammalian cells are common, particularly large deletions and chromosomal translocations, and present a safety challenge for genome editing. Thus, there is still an unmet need to develop safer and more efficient editing tools. We screened diverse DNA polymerases of distinct origins and identified a T4 DNA polymerase derived from phage T4 that strongly prevents undesired on-target damage while increasing the proportion of precise 1- to 2-base-pair insertions generated during CRISPR/Cas9 editing (termed CasPlus). CasPlus induced substantially fewer on-target large deletions while increasing the efficiency of correcting common frameshift mutations in DMD and restored higher level of dystrophin expression than Cas9-alone in human cardiomyocytes. Moreover, CasPlus greatly reduced the frequency of on-target large deletions during mouse germline editing. In multiplexed guide RNAs mediating gene editing, CasPlus repressed chromosomal translocations while maintaining gene disruption efficiency that was higher or comparable to Cas9 in primary human T cells. Therefore, CasPlus offers a safer and more efficient gene editing strategy to treat pathogenic variants or to introduce genetic modifications in human applications.
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.