利用原始心理生理数据和功能数据分析估算人类驾驶员的脑力劳动负荷。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
David Eniyandunmo, MinJu Shin, Chaeyoung Lee, Alvee Anwar, Eunsik Kim, Kyongwon Kim, Yong Hoon Kim, Chris Lee
{"title":"利用原始心理生理数据和功能数据分析估算人类驾驶员的脑力劳动负荷。","authors":"David Eniyandunmo, MinJu Shin, Chaeyoung Lee, Alvee Anwar, Eunsik Kim, Kyongwon Kim, Yong Hoon Kim, Chris Lee","doi":"10.1080/00140139.2024.2379949","DOIUrl":null,"url":null,"abstract":"<p><p>Recent studies have focused on accurately estimating mental workload using machine learning algorithms and extracting features from physiological measures. However, feature extraction leads to the loss of valuable information and often results in binary classifications that lack specificity in the identification of optimum mental workload. This study investigates the feasibility of using raw physiological data (EEG, facial EMG, ECG, EDA, pupillometry) combined with Functional Data Analysis (FDA) to estimate the mental workload of human drivers. A driving scenario with five tasks was employed, and subjective ratings were collected. Results demonstrate that the FDA applied nine different combinations of raw physiological signals achieving a maximum 90% accuracy, outperforming extracted features by 73%. This study shows that the mental workload of human drivers can be accurately estimated without utilising burdensome feature extraction. The approach proposed in this study offers promise for mental workload assessment in real-world applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilising raw psycho-physiological data and functional data analysis for estimating mental workload in human drivers.\",\"authors\":\"David Eniyandunmo, MinJu Shin, Chaeyoung Lee, Alvee Anwar, Eunsik Kim, Kyongwon Kim, Yong Hoon Kim, Chris Lee\",\"doi\":\"10.1080/00140139.2024.2379949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent studies have focused on accurately estimating mental workload using machine learning algorithms and extracting features from physiological measures. However, feature extraction leads to the loss of valuable information and often results in binary classifications that lack specificity in the identification of optimum mental workload. This study investigates the feasibility of using raw physiological data (EEG, facial EMG, ECG, EDA, pupillometry) combined with Functional Data Analysis (FDA) to estimate the mental workload of human drivers. A driving scenario with five tasks was employed, and subjective ratings were collected. Results demonstrate that the FDA applied nine different combinations of raw physiological signals achieving a maximum 90% accuracy, outperforming extracted features by 73%. This study shows that the mental workload of human drivers can be accurately estimated without utilising burdensome feature extraction. The approach proposed in this study offers promise for mental workload assessment in real-world applications.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00140139.2024.2379949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00140139.2024.2379949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究侧重于利用机器学习算法和从生理测量中提取特征来准确估计脑力劳动负荷。然而,特征提取会导致有价值信息的丢失,并经常导致二元分类,在识别最佳脑力劳动负荷方面缺乏特异性。本研究探讨了使用原始生理数据(脑电图、面部肌电图、心电图、电子脑电图、瞳孔测量)结合功能数据分析(FDA)来估算人类驾驶员心理工作量的可行性。采用了包含五项任务的驾驶场景,并收集了主观评分。结果表明,FDA 应用了九种不同的原始生理信号组合,达到了最高 90% 的准确率,比提取的特征高出 73%。这项研究表明,无需使用繁琐的特征提取,就能准确估计人类驾驶员的心理工作量。本研究提出的方法为实际应用中的心理工作量评估带来了希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilising raw psycho-physiological data and functional data analysis for estimating mental workload in human drivers.

Recent studies have focused on accurately estimating mental workload using machine learning algorithms and extracting features from physiological measures. However, feature extraction leads to the loss of valuable information and often results in binary classifications that lack specificity in the identification of optimum mental workload. This study investigates the feasibility of using raw physiological data (EEG, facial EMG, ECG, EDA, pupillometry) combined with Functional Data Analysis (FDA) to estimate the mental workload of human drivers. A driving scenario with five tasks was employed, and subjective ratings were collected. Results demonstrate that the FDA applied nine different combinations of raw physiological signals achieving a maximum 90% accuracy, outperforming extracted features by 73%. This study shows that the mental workload of human drivers can be accurately estimated without utilising burdensome feature extraction. The approach proposed in this study offers promise for mental workload assessment in real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信