通过局部配位操作增强单原子纳米铜酶的抗辐射能力和过氧化物酶样活性。

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Jiabin Wu, Xianyu Zhu, Qun Li, Qiang Fu, Bingxue Wang, Beibei Li, Shanshan Wang, Qingchao Chang, Huandong Xiang, Chengliang Ye, Qiqiang Li, Liang Huang, Yan Liang, Dingsheng Wang, Yuliang Zhao, Yadong Li
{"title":"通过局部配位操作增强单原子纳米铜酶的抗辐射能力和过氧化物酶样活性。","authors":"Jiabin Wu, Xianyu Zhu, Qun Li, Qiang Fu, Bingxue Wang, Beibei Li, Shanshan Wang, Qingchao Chang, Huandong Xiang, Chengliang Ye, Qiqiang Li, Liang Huang, Yan Liang, Dingsheng Wang, Yuliang Zhao, Yadong Li","doi":"10.1038/s41467-024-50416-8","DOIUrl":null,"url":null,"abstract":"<p><p>The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN<sub>3</sub>-centered SAzyme (CuN<sub>3</sub>-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN<sub>4</sub>-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN<sub>3</sub> active moiety confers optimal H<sub>2</sub>O<sub>2</sub> adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN<sub>3</sub>-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H<sub>2</sub>O<sub>2</sub> by CuN<sub>3</sub>-SAzyme. Moreover, CuN<sub>3</sub>-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN<sub>3</sub>-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"6174"},"PeriodicalIF":14.7000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263674/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation.\",\"authors\":\"Jiabin Wu, Xianyu Zhu, Qun Li, Qiang Fu, Bingxue Wang, Beibei Li, Shanshan Wang, Qingchao Chang, Huandong Xiang, Chengliang Ye, Qiqiang Li, Liang Huang, Yan Liang, Dingsheng Wang, Yuliang Zhao, Yadong Li\",\"doi\":\"10.1038/s41467-024-50416-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN<sub>3</sub>-centered SAzyme (CuN<sub>3</sub>-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN<sub>4</sub>-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN<sub>3</sub> active moiety confers optimal H<sub>2</sub>O<sub>2</sub> adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN<sub>3</sub>-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H<sub>2</sub>O<sub>2</sub> by CuN<sub>3</sub>-SAzyme. Moreover, CuN<sub>3</sub>-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN<sub>3</sub>-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"6174\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11263674/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-024-50416-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-50416-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

天然酶在辐射作用下失活,这对其在放射治疗中的应用构成了巨大挑战。在这种极端条件下,具有高结构稳定性的单原子纳米酶(SAzymes)成为替代天然酶缩小肿瘤的有希望的候选物质。在这里,我们报告了一种以 CuN3 为中心的 SAzyme(CuN3-SAzyme),它通过局部调节单个铜位点的配位环境,比以 CuN4 为中心的 SAzyme 表现出更高的过氧化物酶样催化活性。密度泛函理论计算显示,CuN3 活性分子具有最佳的 H2O2 吸附和解离特性,因此有助于提高 CuN3-SAzyme 的酶活性。X 射线的引入可改善 CuN3-SAzyme 分解 H2O2 的动力学。此外,CuN3-SAzyme 在接受 500 Gy 总辐射剂量后非常稳定,其几何结构和配位环境没有发生显著变化,同时仍保持着与天然酶相当的过氧化物酶样活性。最后,这种开发出来的 CuN3-SA 酶具有显著的抗辐射性,可用作外场改进治疗剂,用于增强体外和体内的放射酶疗法。总之,这项研究为开发通过局部配位操作提高酶活性并比天然酶具有更高抗放射性的 SAzymes 提供了一个范例,例如,可用作癌症治疗的增敏剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing radiation-resistance and peroxidase-like activity of single-atom copper nanozyme via local coordination manipulation.

The inactivation of natural enzymes by radiation poses a great challenge to their applications for radiotherapy. Single-atom nanozymes (SAzymes) with high structural stability under such extreme conditions become a promising candidate for replacing natural enzymes to shrink tumors. Here, we report a CuN3-centered SAzyme (CuN3-SAzyme) that exhibits higher peroxidase-like catalytic activity than a CuN4-centered counterpart, by locally regulating the coordination environment of single copper sites. Density functional theory calculations reveal that the CuN3 active moiety confers optimal H2O2 adsorption and dissociation properties, thus contributing to high enzymatic activity of CuN3-SAzyme. The introduction of X-ray can improve the kinetics of the decomposition of H2O2 by CuN3-SAzyme. Moreover, CuN3-SAzyme is very stable after a total radiation dose of 500 Gy, without significant changes in its geometrical structure or coordination environment, and simultaneously still retains comparable peroxidase-like activity relative to natural enzymes. Finally, this developed CuN3-SAzyme with remarkable radioresistance can be used as an external field-improved therapeutics for enhancing radio-enzymatic therapy in vitro and in vivo. Overall, this study provides a paradigm for developing SAzymes with improved enzymatic activity through local coordination manipulation and high radioresistance over natural enzymes, for example, as sensitizers for cancer therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信